
Arup Nanda
Starwood Hotels

Lowdown on Stats

• Optimizer Statistics on tables and indexes are vital for

the optimizer to compute optimal execution plans

• In many cases you gather stats with estimate

• Without accurate stats, the optimizer may decide on a

sub-optimal execution plan

• When stats change, the optimizer may change the plan

• Truth: stats affect the plan, but not necessarily positively

2

Meet John the DBA

• John the DBA at Acme Bank

• Hard working, knowledgeable, politically not very savvy

• Collects statistics every day via an automated job

3

Data: Value vs Pattern

State Customers %age

CT 1,000 10%

NY 5,000 50%

CA 4,000 40%
State Customers %age

CT 2,000 10%

NY 10,000 50%

CA 8,000 40%

After some days

Important
The data itself changed; but the
pattern did not. The new stats will not
change the execution path, and
therefore probably not needed

4

Case 2

State Customers %age

CT 1,000 10%

NY 5,000 50%

CA 4,000 40%
State Customers %age

CT 2,500 12.5%

NY 10,500 52.5%

CA 7,000 35.0%

After some days

Important
The pattern is different; but still close
to the original pattern. Most queries
should perform well with the original
execution plan.

5

Naked Truth

• Stats can actually create performance issues

• Example

– A query plan had nested loop as a path

– Data changed in the underlying tables

– But the pattern did not change much

– So, NL was still the best path

– Stats were collected

– Optimizer detected the subtle change in data pattern and

changed to hash joins

– Disaster!

6

The problem with new stats

• The CBO does not now what is close enough

– For it, 50.0% and 52.5% are different values

• The internal logic of the CBO may determine a different

plan due to this subtle change

• This new plan may be better, or worse

– This is why many experts recommend not collecting stats

when database performance is acceptable

7

John followed the advice

• John followed the advice

• He stopped collecting stats

• The database performance was acceptable

• But one day – disaster struck!

8

Data Pattern Changed

State Customers %age

CT 1,000 10%

NY 5,000 50%

CA 4,000 40%
State Customers %age

CT 10,500 52.5%

NY 2,500 12.5%

CA 7,000 35.0%

After some days

CT was 12.5% but now it is 52.5%

9

• Optimal Plan is Different

– Queries against CT used to have index scan; but now a full

table scan would be more appropriate

• Since the stats were not collected, CBO did not know

about the change

– Queries against CT still used index scan

– And NY still used full table scan

• Disaster!

• John was blamed

10

What’s the Solution?

• If only you could predict the effect of new stats before the

CBO uses them

– and make CBO use them if there are no untoward issues

• Other Option

– You can collect stats in a different database

– Test in that database

– If everything looks ok, you can export the stats from there

and import into production database

• The other option is not a very good one

– The test database may not have the same distribution

– It may not have the same workload

– Worst – you don’t have time to test all queries

11

Pending Stats

• In Oracle 11g R1, John can use a new feature –

Pending Statistics

• In short

– John collects stats as usual

– But the CBO does not see these new stats

– John examines the effects of the stats on queries of a

session where these new stats are active

– If all look well, he can “publish” these stats

– Otherwise, he discards them

12

How to Make Stats “Pending”

• It’s the property of the table (or index)

• Set it by a packaged procedure

• Example:

• After this, the stats collected will be pending cr_sales.sql
sales_stats.sql
count.sql
explct.sql
explny.sql
upd.sql
prefs_false.sql

13

Table Preferences

• The procedure is not new. Used before to set the default

properties for stats collection on a table.

– e.g. to set the default degree of stats collection on the

table to 4:

14

Stats after “Pending”

• When the table property of stats “PUBLISH” is set to

“”FALSE”

• The stats are not visible to the Optimizer

• The stats will not be updated on USER_TABLES view

either:

la.sql_

15

Visibility of Pending Stats

• The stats will be visible on a new view

pending.sql_

16

Checking the Effect of Pending Stats

• Set a special parameter in the session

• After this setting, the CBO will consider the new stats in

that session only

• You can even create and index and collect the pending

stats on the presence of the index

• To check if the index would make any sense

alter_true.sql_

17

Publishing Stats

• Once satisfied, you can make the stats visible to

optimizer

• Now the USER_TABLES will show the correct stats

• Optimizer will use the newly collected stats

• Pending Stats will be deleted

publish.sql_

18

What if the New Stats make it Worse?

• Simply delete them

• The pending stats will be deleted

• You will not be able to publish them

19

Checking for Preferences

• You can check for the preference for publishing stats on

the table SALES:

• Or, here is another way, with the change time:

20

Other Preferences

• The table property is now set to FALSE

• You can set the default stats gathering of a whole

schema to pending

• You can set it for the whole database as well

–

21

Loading of Partitioned Tables

1. Load Partition P1
of Table

2. Rebuild Partition
P1 of the Local
Index

3. Repeat for all local
indexes

4. Collect stats

1. Load Partition P2
of Table

2. Rebuild Partition
P2 of the Local
Index

3. Repeat for all local
indexes

4. Collect stats

Collect Table Global Stats

1. You may want to make sure that the final table global stats are collected
after all partition stats are gathered

2. And all are visible to CBO at the same time

22

Options

• You can postpone the stats collection of the partitions to

the very end

• But that means you will lose the processing window that

was available after the partition was loaded

• Better option: set the table’s stats PUBLISH preference

to FALSE

• Once the partition is loaded, collect the stat; but defer

the publication to the very end

23

Defer Partition Table Stats

Time

O
ri

gi
n

al

Time

C
h

an
ge

d

Table Loading

Index Building

Stats Collection

Stats visible
here

Stats visible
here

P1

P2

P3

P1

P2

P3

24

Stats History

• When new stats are collected, they are maintained in a

history as well

• In the table

• Exposed through

hist.sql_

25

Reinstate the Stats
• Suppose things go wrong

• You wish the older stats were present rather than the
newly collected ones

• You want to restore the old stats

•
reinstate.sql_

26

Exporting the Pending Stats

• First create a table to hold the stats

• This will create a table called

• This table will hold the pending stats

cr_stattab.sql_

27

Export the stats

• Now export the pending stats to the newly created stats

table

• Now you can export the table and plug in these stats in a

test database

–

export.sql
del_stats.sql

import.sql_

28

Real Application Testing
• You can use Database Replay and SQL Performance Analyzer to

recreate the production workload

• But under the pending stats, to see the impact

• In SPA use

• That way you can predict the impact of the new stats with your

specific workload

29

Some additional uses

• You can create a SQL Profile in your session

– With private stats

• Then this profile can be applied to the other queries

• You can create SQL Plan Management Baselines based

on these private stats

• Later you can apply these baselines to other sessions

30

SQL Plan Management

31

SELECT * FROM EMP
WHERE SAL>1000

SQL Statement
SQL_ID = a1b2c3d4

SELECT

ACCESS

TABLE

INDEX

SELECT

ACCESS

TABLE

INDEX

optimizer_goal = first_rows

db_file_multiblock_read_count

optimizer_goal = all_rows
db_file_multiblock_read_count

Plan 1
PLAN_HASH_VALUE = 1a2b3c

Plan 2
PLAN_HASH_VALUE = 2a3b4cA single SQL statement may

have multiple plans associated
with it

32

SQL Statement S1

Plan P1

Plan P2

Plan P3

Baseline

A baseline is a
collection of plans
for a specific SQL
statement

33

SQL Statement S1

Plan P1

Plan P2

Plan P3

Baseline

Plan P4

A new plan was
generated as a
result of some

change, e.g. the
optimizer

parameters were
changed. This plan

is added to the
baseline

34

SQL Statement S1

Plan P1

Plan P2

Plan P3

Baseline

Plan P4

When a SQL is
reparsed, the optimizer
compares the plan to
the list of plans in the
baseline, but not the
newly generated plan
as it is not “accepted”.

35

SQL Statement S1

Plan P1

Plan P2

Plan P3

Baseline

Plan P3

A plan is no longer
valid, e.g. it had an
index scan; but the

index was later
dropped. It is

marked as such.

New Plan is Worse

• Baselines contain the history of

plans for an SQL statement

• If there was a good plan ever, it

will be there in the baseline

• So the optimizer can choose the

plan with the lowest cost

36

Plan P1

Plan P2

Plan P3

Baseline

Plan P4

Cost = 10

Cost = 12

Cost = 9

New plan.
Cost = 15

Optimizer will choose
P3 even though the
new plan generated

was P4

New Plan is the Best

• Even if the new plan is the best,

it will be not be immediately used

• The DBA can later made the plan

fit for consideration by “evolving”

it!

37

Plan P1

Plan P2

Plan P3

Baseline

Plan P4

Cost = 10

Cost = 12

Cost = 9

New plan.
Cost = 6

Optimizer will
choose P3 since it is
the best in the list

of “accepted” plans

38

SQL Statement

New Plan Generated

any other
accepted plans in

baseline?

Add this plan to the SMB

Baseline this plan but set to Not
Accepted

Choose the best accepted plan

Use this best plan, not the new
plan

yes no

SQL Management Base

• A repository where the following are stored

– Statements

– Plan histories

– Baselines

– SQL profiles

• Stored in SYSAUX tablespace

39

Configuring SMB
To Check

To Change:

40

Adding Baselined Plans
• To capture baselines

• … execute the queries at least 2 times each

• Or run the application as usual

• A plan is baselined when a SQL is executed more than
once

41

Cap_true.sql

Cap_false.sql_

Plans With Pending Stats

• Change the optimizer parameter to use pending stats

• a new plan is generated

• Capture the plans for the baseline

• Now all the plans will use pending stats in the session

• The new plan is stored in baseline but not “accepted”; so

it will not be used by the optimizer

42

To check for Plans in the baseline

43

SQL Handle is the same since it’s the
same SQL; but there are two plans

bl1.sql_

To See Plan Steps in Baseline

• Package DBMS_XPLAN has a new function called

display_sql_plan_baseline:

44

Handle1.sql_

Checking Plans Being Used

45

This shows that a SQL Plan
Baseline is being used.

Evolve a Plan
• Make a plan as acceptable (only if it is better)

• Variable REP shows the analysis.

46

Evolve1.sql_

Fixing a Plan

• A plan can be fixed by:

• Once fixed, the plan will be given priority

• More than one plan can be fixed

• In that case optimizer chooses the best from them

• To “unfix”, use

47

Fix.sql_

Use of Baselines

• Checking the plan before accepting new stats

• Fixing Plan for Third Party Applications

• Database Upgrades

– Both within 11g and 10g->11g

– Capture SQLs into STS then move the STS to 11g

• Database Changes

– Parameters, Tablespace layout, etc.

– Fix first; then gradually unfix them

48

Stored Outlines

• Outlines make a plan for a query fixed

– The optimizer will pick up the fixed plan every time

• Problem:

– Based on the bind variable value, data distribution, etc.

specific plan may change

– A fixed plan may actually be worse

49

Summary
• You can modify the property of a table so that new stats are not

immediately visible to the optimizer

• In a session, you can use a special parameter to make the optimizer

see these pending stats, so that you can test the effect of these

stats.

• If you are happy with the stats collected, you can make them visible

to optimizer

• Otherwise, you can discard the stats

• You can see the history of stats collected on tables

• You can restore a previously collected set of stats

• You can export the pending stats to a test database

• You can test the effect of the pending stats with your specific

workload by SQL Performance Analyzer and Database Replay.

• You can create baselines by using the pending stats

50

51Publish Stats After Checking. Arup Nanda 2010
51

