
Page 24 ◆ Se lec t

Background
In the actual case shown here, we had a very complex query that the client
applications issued before processing other records. Note that the tables and
columns have been changed to protect the intellectual property.

The initial design was accomplished by creating a view from the query
and letting the users select from the view. This proved costly in terms of
performance. Running the query in SQL*PLUS took about forty minutes to
run, and also took up huge temporary tablespace areas. Since this query
was supposed to be run very frequently, this approach could not be used.

The second approach was to use a materialized view refresh-on-commit for
the query. Since the query was complex, it could not be set up for fast
refresh. A complete refresh was taking more than 24 hours and thus was not
feasible. Other options considered along this line were building materialized
views from materialized views and making each one fast refreshable on
commit. However, the maintenance of several layers of materialized views
would have been expensive in terms of personnel resources and space. A
bigger problem in on-commit fast refreshable materialized views was the
result of a failure. If a refresh ever failed, the future fast refreshes would be
stopped until the DBA made a call to DBMS_MVIEW package. Since this type
of refresh has a high transaction rate it was prone to errors. The overall
solution would have proved too expensive to maintain. In addition, when a
prototype was built and tested at the expected transaction rate, the ultimately
materialized view could not be refreshed within an acceptable time limit.

Ultimately the only acceptable option was to create triggers on all source
tables to capture changes and update the summary table built earlier. Since
the query’s nature was known, it was easy to assemble the code that updated
the counts in the summary table when a record from source tables was
changed in such way that its selectivity in the query was also altered.

Space constraints do not permit a complete presentation of the actual
solution for the case given above. Therefore, it will be illustrated using a
much-simplified query based on the sample tables from the SCOTT
schema as shown here:

Although it was not a complex query, it will suffice for the demonstration.
Since this query was taking a long time to execute, we built a table called
DEPT_COUNTS with two columns, DEPTNO and EMP_COUNT. The table was

An Alternative Approach to
Summary Table Management
Using Advanced Queues
By Arup Nanda

O
ne of the biggest challenges facing the designer of

a data warehouse demanding near real time

synchronization is that of maintaining summary

tables. While it becomes imperative to incrementally refresh

the changes from the source tables, traditional methods such

as materialized views fail when the summary building query

becomes extremely complex in nature with several joins,

especially outer joins. The complete refresh may not be

acceptable due to the real time performance needs. Using

triggers to populate the summary table does not work either,

due to the data concurrency requirements. This article

presents a rather unconventional approach to resolve this

issue using Oracle Advanced Queues. The solution is to feed

the changes to the source tables from multiple processors to a

queue and at the other end, have only one process retrieve

the information and apply the changes to the summary

tables. This approach takes care of the concurrency problem

while attaining a near real time performance.

SELECT DISTINCT NVL(C.COL1, R.COL1) AS COL1,
RQ.COL2, COUNT(C.COL3) AS COUNTER
FROM TAB1 R, TAB2 C, TAB3 CP, TAB4 RQ
WHERE R.COL4 = C.COL4
AND C.COL1 = RQ.COL1
AND (CP.COL5 = :b0
OR (CP.COL5 = :b1 AND CP.COL6 = :b2))
AND CP.COL3 = C.COL3
AND NOT EXISTS
(SELECT 1
FROM TAB5 CCL,TAB6 CL, TAB7 CHO
WHERE CCL.COL7 = CL.COL7
AND CL.COL8 = CHO.COL8
AND CCL.COL3 = C.COL3
AND CHO.COL1 = ‘Y’)
GROUP BY NVL(C.COL1, R.COL1), RQ.COL2
ORDER BY RQ.COL2

SELECT DEPTNO, COUNT(*)
FROM EMP
WHERE STATUS = ‘ACTIVE’
GROUP BY DEPTNO

continued on page 25

1st Qtr 2003 ◆ Page 25

initially populated by a query. A trigger was created on the EMP table that
updated the EMP_COUNT when the rows were changed, deleted or inserted.
The pseudo code was something like the following.

The code was then extended for deletions and updates in the same manner.
Since this trigger manipulated the counts, the needed data could be obtained
from the DEPT_COUNTS table without using the complex query.

This approach was fine in principle and would have worked in a single user
environment. However, if two sessions insert employee records for the same
department, for which there were no records before, then the following
situation arises.

Time Action
0 There is no employee record with DEPTNO = 5; therefore there is no

record in DEPT_COUNTS for DEPTNO = 5

1 Session 1 inserts record with DEPTNO = 5; does not commit.

2 The trigger finds no record for DEPTNO = 5 in the DEPT_COUNTS table.
This inserts a record for DEPTNO = 5 in DEPT_COUNTS table.

3 Session 2 inserts another record with DEPTNO = 5

4 The trigger sees the read consistent view of the table DEPT_COUNTS. In
this read consistent view, it also finds no record for DEPTNO = 5 in the
DEPT_COUNTS table. This inserts a record for DEPTNO = 5 in DEPT_
COUNTS table. However, since the primary key is DEPTNO, and for
DEPTNO = 5 there is another row, albeit uncommitted, this transaction
waits for a lock.

5 Session 1 Commits. The committed value of EMP_COUNTS = 1.

6 Session 2 errors out, since it also tried to insert the same record,
DEPTNO = 5 and EMP_COUNTS = 1.

As you can see the second transaction fails when it should not have. A similar
problem occurs when a session deletes the last employee of a department but
the other session does not see that and tries to update it. Yet another problem
is locking. If two sessions enter records for the same DEPTNO, the second
one must wait to get the lock until the first one commits. This creates an
artificial row locking conflict.

All these significant problems required coming up with another solution. At
this point, the advanced queue approach was considered. Advanced queues are
typically used for application development where one part of the processing is
de-coupled from the others. However, the model may be used in various other
situations such as this one. In order to present the concepts as concisely as possible,
the same simplified example as above will be used. Although this scenario is much
less complicated than the actual case, the design of the solution is still useful.

What are Advanced Queues (AQs)?
Advanced Queue (AQ) is a queue-based system entirely within the database.
A queue is a simple concept to grasp. It is like a pipeline where anyone can
place something in a queue where it waits until it is selected. This is typically
done on a first in/first out basis.

In order to explain advanced queues more easily, some definitions are
needed:

• Producer: Person placing information in the queue

• Message: Information that goes into the queue

• Consumer: Person who selects the message from the queue

• Payload: Message carrying the useful data. A message is like an envelope
enclosing the payload (letter).

• Enqueuing: The act of placing a payload in the queue

• Dequeuing: Retrieving the payload from the queue

• Subscribers: Processes that get the message off of the queue

There can be more than one producer and consumer for a queue. The
producer and consumers can also be the same process. A queue can have
subscribers, but this does not prevent other subscribers from dequeuing the
same message. This is called a multi-consumer publishers-subscriber model
queue. There can be rules defined that allow certain, but not all, subscribers
to dequeue payloads from the queue.

AQs can be persistent or non-persistent. The former type is not in memory
but physically stored. In case of a database shutdown, the queue contents are
preserved. This type of queue is also protected by the database; it can be
backed up and recovered. The latter type of queue is in memory only and
disappears as soon as the instance is brought down. Needless to say, the
performance is better in non-persistent queues.

Perhaps the single most important attribute of an AQ is its ability to
participate in a transaction – i.e. the message is placed in the queue only
when the overall transaction commits. It is never placed if the transaction
is rolled back. This characteristic of AQ provides rich benefits for building
a messaging system that is transaction-aware or, in other words, able to
handle real-world business processes.

In effect, an AQ-based system is like a huge delivery system. Since it is
contained entirely within an Oracle database, it is protected from failures and
is transaction-aware. Each queue is associated with a database table called
Queue Table (QT) that can hold more than one queue. Each QT can handle
only one type of payload. The payload can be a simple VARCHAR2 string or an
Oracle Abstract Datatype (ADT) object. Since the QT is a physical table, it can
also have storage attributes such as tablespace, initial extent, etc. defined.

A queue is created in a Queue Table. A queue called “exception queue” is
always created automatically in a queue table. This is used to retain the
messages that failed while dequeuing. The queue system is managed by two
Oracle-supplied packages named DBMS_AQ and DBMS_AQADM, in addition
to the Oracle Enterprise Manager Console.

Solution Approach
Returning to the problem at hand, the proposed solution involves building a
queue with the triggers as producers that place the changed data into the
queue. On the other side only one consumer (a stored procedure) dequeues
the message and updates the summary table. Since the update is done by only
one session, the problem of incorrect updates will never occur.

If INSERTING then
If STATUS = ‘ACTIVE’ then

If (record present in DEPT_COUNTS for this deptno) then
Update DEPT_COUNTS
Set EMP_COUNTS = EMP_COUNTS + 1;

Else
Insert into DEPT_COUNTS values
(this Deptno, 1);
end if

end if;
…

An Alternative Approach to Summary Table Management continued from page 24

Page 26 ◆ Se lec t

Initial Database Preparation

The database has to be set up with the following parameter and value in the
init.ora file.

aq_tm_processes = 2

This sets up two AQ Time Manager processes to check the queues for
messages for time related events such as expiration, retry, etc. These can also
be set up by ALTER SYSTEM. This parameter can have a value up to 10. The
processes are started as background processes and named with a format
QMNn, where n is the number of the monitor.

The users who will operate the queues need to be granted appropriate privi-
leges using the following two lines, (provided the user is SCOTT.) Connecting
as SYS, issue these two statements.

Setting Up the Working Procedures

The first task is to define a type that will be used in the change data transfer.
This type is an Oracle Abstract Data Type (ADT) and will be used to define
the payload of the message. The type is defined as follows. All statements
from now on will be executed as the user SCOTT.

Since we have to transmit the information about what happened and which
deptno was affected, we have defined the old and the new department
numbers and the action code which will be one character string with values
I, D or U, designating Insert, Delete or Update respectively. Next, we will build
the procedure that will perform the update on the summary table. One
special consideration must be made concerning this operation. Since the
table is maintained by us and not by Oracle, what happens when someone
truncates the EMP table, or even drops it? These events will not fire the
trigger that captures the changes. Therefore, we need to introduce another
event that truncates the DEPT_COUNTS tables when the EMP table is
truncated or dropped. This can be done by passing a special action code,
‘T’ to the processing procedure as shown here:

NOTE: To conserver space, I have not taken into account all possibilities
while writing this code. For example, what happens when the EMP_COUNT
becomes 0 in the DEPT_COUNTS table? The row should then be deleted.
Similarly, other housekeeping tasks such as exception handling have not been
considered here. The example is presented to convey the general idea; the
reader is expcted to consider all aspects of the system when developing for a
real system.

Setting Up the Queue System

Now we will build the queue table, called “dept_counts_qt” using the code
shown here:

In this queue table, we will create the queue called “dept_counts_q.”

At this point, we are ready to place the messages in the queue. We will create
a generic procedure to enqueue dept_counts_q, so that it can be used by
other applications as well using the following procedure:

GRANT EXECUTE ON DBMS_AQADM TO SCOTT;
GRANT EXECUTE ON DBMS_AQ TO SCOTT;

create or replace type dept_counts_type as object
(

action_type char(1),
old_deptno number(2),
new_deptno number(2)

)

create or replace procedure process_dept_counts
(p_action IN char,

p_old_deptno IN number,
p_new_deptno IN number)

as
invalid_action exception;

begin
if (p_action = ‘T’) then

execute immediate ‘truncate table dept_counts’;
elsif (p_action = ‘D’) then

update dept_counts
set emp_count = emp_count - 1
where deptno = p_old_deptno;

elsif (p_action = ‘I’) then
update dept_counts
set emp_count = emp_count + 1
where deptno = p_new_deptno;

if (SQL%NOTFOUND) then
insert into dept_counts
values
(p_new_deptno, 1);

end if;
elsif (p_action = ‘U’) then

update dept_counts
set emp_count = emp_count - 1
where deptno = p_old_deptno;
if (SQL%NOTFOUND) then

null;
end if;
update dept_counts
set emp_count = emp_count + 1
where deptno = p_new_deptno;
if (SQL%NOTFOUND) then

insert into dept_counts values
(p_new_deptno, 1);

end if;
else

raise invalid_action;
end if;

end;

begin
DBMS_AQADM.CREATE_QUEUE_TABLE (

queue_table => ‘DEPT_COUNTS_QT’,
queue_payload_type=> ‘DEPT_COUNTS_TYPE’,
multiple_consumers=>FALSE,
storage_clause =>

‘TABLESPACE USR INITRANS 10 STORAGE (FREELISTS 10 FREELIST GROUPS 2)’,
compatible => ‘8.1’);

end;

begin
DBMS_AQADM.CREATE_QUEUE (

queue_name =>’DEPT_COUNTS_Q’,
queue_table=>’DEPT_COUNTS_QT’,
max_retries=>’5’,
retry_delay=>’0’);
/* Now Start the Queue */
dbms_aqadm.start_queue(‘DEPT_COUNTS_Q’,TRUE,TRUE);

end;

continued on page 27

1st Qtr 2003 ◆ Page 27

Similarly to dequeue the payload from the queue, use another generic
procedure shown here:

The final action is to send the messages to the queue via a trigger. We can
create a trigger on the EMP table using the logic discussed above:

For the truncate or drop part, we need to code that logic in a database trigger
as shown here:

Now, we have a complete system to maintain the summary table
DEPT_COUNTS from the EMP table. The procedure deq_dept_counts_q is
run from the SQL prompt or in the background via a shell script. It runs in an
infinite loop until it is killed. The procedure continues to listen to the queue
and processes the messages that pass through it. This idea can be extended to
cover more than one source table and even more than one summary table.
The queues can be extended to cover a variety of changes or a separate
queue can be created for each type of payload. The former is needed when

create or replace procedure deq_dept_counts_q
as

deq_opt dbms_aq.dequeue_options_t;
msg_prop dbms_aq.message_properties_t;
payload dept_counts_type;
msgid raw(16);

begin
loop

deq_opt.wait := dbms_aq.forever;
deq_opt.navigation := dbms_aq.next_message;
dbms_aq.dequeue(

‘DEPT_COUNTS_Q’,
deq_opt,
msg_prop,
payload,
msgid

);
process_dept_counts(

payload.action_type,
payload.old_deptno,
payload.new_deptno);

commit;
end loop;

end;

create or replace trigger tr_trunc_or_drop_table
after drop or truncate on schema
declare

ev varchar2(200);
ow varchar2(200);
ty varchar2(200);
ob varchar2(200);
errm varchar2(2000);
l_msg dept_counts_type :=

dept_counts_type(‘T’,null,null);
begin

ow := ora_dict_obj_owner;
ty := ora_dict_obj_type;
ob := ora_dict_obj_name;
if ((ow = user) and

(ty = ‘TABLE’) and
(ob = ‘EMP’))

then
enq_dept_counts_q (l_msg);

end if;
end;

create or replace procedure enq_dept_counts_q
(p_msg in dept_counts_type)

as
enq_opt dbms_aq.enqueue_options_t;
msg_prop dbms_aq.message_properties_t;
msg_id raw(16);

begin
sys.dbms_aq.enqueue (
‘DEPT_COUNTS_Q’,
enq_opt,
msg_prop,
p_msg,
msg_id);

end;

create or replace trigger tr_ar_iud_emp
after insert or delete or update on emp
for each row
declare

l_action char(1);
l_old_deptno number(2);
l_new_deptno number(2);

begin
if (inserting) then

l_action :=’I’;
l_old_deptno := null;
l_new_deptno := :new.deptno;

elsif (deleting) then
l_action :=’D’;
l_old_deptno := :old.deptno;
l_new_deptno := null;

elsif (updating) then
l_action :=’U’;
l_old_deptno := :old.deptno;
l_new_deptno := :new.deptno;

else
null;

end if;
enq_dept_counts_q(

dept_counts_type(
l_action,
l_old_deptno,
l_new_deptno));

end;

An Alternative Approach to Summary Table Management continued from page 26

Page 28 ◆ Se lec t

the changes need to be applied as one atomic transaction. To facilitate this
process, the dequeue process can be kicked off from a database job through
dbms_job, in which case the job will automatically start during database
startup, making administration even simpler.

The completely assembled system is depicted in Figure 1.

Important Consideration
The whole system described in this article is based on an asynchronous and
decoupled transaction-processing model. Please note that since they are
decoupled, the normal database properties such as read consistency are not
available. This may render the system unfeasible in specific situations. For
instance, in this example, if the source session inserts into EMP table but
does not commit, it will not be able to see that record in DEPT_COUNTS
table. This is unlike a regular transaction processing system where the source
will be able to see this record but not others. This important property must be
carefully considered when applying the model to a real world system.

Administration
This system itself does not need any type of administration; however
sometimes it may be worthwhile to “peek under the hood.” The frequently
requested procedure is to identify the number of messages in the queue at a
specific time. This can be done using the following query.

If the messages are not retrieved from the queue, check the exception queue,
named after the queue table and the suffix _QE. If the queue table name is
DEPT_COUNTS_QT, then exception queue is named
AQ$DEPT_COUNTS_QT_QE.

Other Uses
As seen from the example, this AQ based system can be used to maintain any
type of summary tables, not just in data warehousing environments but in
practically any type of application: OLTP, Web-based, or a mixture of DSS and
OLTP. The near real-time performance of this system makes it ideal for
several uses without placing undue burden on the system resources as well as
making users happy with faster response time. The faster response (seconds
as opposed to hours) opens up another possible use of this system, namely
normal applications replacing complicated queries. For instance, a banking
application might use this while displaying a customized message to the
customer depending upon his or her various relationships with the bank.
Typically, this needs complicated queries and response time sometimes
wanes. Instead of adding additional indexes which may not be feasible, the
AQ system may be used to maintain a near real time summary table for the
relationships, and the application can select from the table.

This example was intended to provide the concepts and workings of a
functional AQ based system. Real life situations are much more complex
but the inner workings remain the same. The objective of the exercise
was to introduce a relatively unknown usage of an Oracle tool to solve a
well-known problem.

select count(*) from AQ$DEPT_COUNTS_QT where queue = ‘DEPT_COUNTS_Q’

About the Author
Arup Nanda has been an Oracle DBA for more than nine years
working in all aspects of database design and management such as
performance tuning and disaster recovery planning. He is the founder
of Proligence, Inc. (www.proligence.com), a New York area based
Oracle database consultancy firm providing specialized services such
as setting up replication, parallel server, performance tuning and
providing alternative solutions like the one described in this article. He
can be reached at arup@proligence.com.

Figure 1: Diagram of completed system

