
Tips and Techniques for
Statistics Gathering

Arup Nanda
Longtime Oracle DBA

Agenda
• High Level

– Pending stats
– Correlated Stats
– Sampling

Stats Collection Tips and Techniques
2

Reporting
• New reporting function for auto stats collection
• Returns the report in CLOB

SQL> var ret clob
SQL> set long 999999
SQL> exec :ret :=
dbms_stats.report_stats_operations;

PL/SQL procedure successfully completed.

SQL> print ret

Stats Collection Tips and Techniques
3

rep.sql

Lowdown on Stats
• Optimizer Statistics on tables and indexes are vital

for the optimizer to compute optimal execution
plans

• In many cases you gather stats with estimate
• Without accurate stats, the optimizer may decide on

a sub-optimal execution plan
• When stats change, the optimizer may change the

plan
• Truth: stats affect the plan, but not necessarily

positively

4
Stats Collection Tips and Techniques

Data: Value vs Pattern
State Customers %age
CT 1,000 10%
NY 5,000 50%
CA 4,000 40% State Customers %age

CT 2,000 10%
NY 10,000 50%
CA 8,000 40%

After some days

Important
The data itself changed; but
the pattern did not. The
new stats will not change
the execution path, and
therefore probably not
needed

5
Stats Collection Tips and Techniques

Case 2
State Customers %age
CT 1,000 10%
NY 5,000 50%
CA 4,000 40%

State Customers %age
CT 2,500 12.5%
NY 10,500 52.5%
CA 7,000 35.0%

After some days

Important
The pattern is different;
but still close to the
original pattern. Most
queries should perform
well with the original
execution plan. 6

Stats Collection Tips and Techniques

Naked Truth
• Stats can actually create performance issues
• Example

– A query plan had nested loop as a path
– Data changed in the underlying tables
– But the pattern did not change much
– So, NL was still the best path
– Stats were collected
– Optimizer detected the subtle change in data pattern

and changed to hash joins
– Disaster!

7
Stats Collection Tips and Techniques

The problem with new stats
• The CBO does not now what is close enough

– For it, 50.0% and 52.5% are different values
• The internal logic of the CBO may determine a

different plan due to this subtle change
• This new plan may be better, or worse

– This is why many experts recommend not collecting
stats when database performance is acceptable

8
Stats Collection Tips and Techniques

What’s the Solution?
• If only you could predict the effect of new stats before

the CBO uses them
– and make CBO use them if there are no untoward issues

• Other Option
– You can collect stats in a different database
– Test in that database
– If everything looks ok, you can export the stats from there

and import into production database
• The other option is not a very good one

– The test database may not have the same distribution
– It may not have the same workload

9
Stats Collection Tips and Techniques

Pending Stats
• Answer: Pending Statistics
• In short

– DBA collects stats as usual
– But the CBO does not see these new stats
– DBA examines the effects of the stats on queries of a

session where these new stats are active
– If all look well, he can “publish” these stats
– Otherwise, he discards them

10
Stats Collection Tips and Techniques

How to Make Stats “Pending”
• It’s the property of the table (or index)
• Set it by a packaged procedure

DBMS_STATS.SET_TABLE_PREFS

• Example:
begin
dbms_stats.set_table_prefs (
ownname => 'ARUP',
tabname => 'SALES',
pname => 'PUBLISH',
pvalue => 'FALSE'

);
end;

• After this, the stats collected will be pending

prefs_false.sql
sales_stats.sql_

11
Stats Collection Tips and Techniques

Table Preferences
• The procedure is not new. Used before to set the

default properties for stats collection on a table.
– e.g. to set the default degree of stats collection on the

table to 4:
dbms_stats.set_table_prefs (

ownname => 'ARUP',
tabname => 'SALES',
pname => 'DEGREE',
pvalue => 4

);

12
Stats Collection Tips and Techniques

Stats after “Pending”
• When the table property of stats “PUBLISH” is set to

“”FALSE”
• The stats are not visible to the Optimizer
• The stats will not be updated on USER_TABLES view

either:
select to_char(last_analyzed,'mm/dd/yy
hh24:mi:ss')

from user_tables
where table_name = 'SALES';

TO_CHAR(LAST_ANAL

09/10/07 22:04:37

la.sql_

13
Stats Collection Tips and Techniques

Visibility of Pending Stats
• The stats will be visible on a new view

USER_TAB_PENDING_STATS

select to_char(last_analyzed,'mm/dd/yy
hh24:mi:ss')

from user_tab_pending_stats
where table_name = 'SALES';

TO_CHAR(LAST_ANAL

09/21/07 11:03:35

pending.sql_

14
Stats Collection Tips and Techniques

Checking the Effect
• Set a special parameter in the session

alter session set
optimizer_use_pending_statistics = true;

• After this setting, the CBO will consider the new
stats in that session only

• You can even create and index and collect the
pending stats on the presence of the index

• To check if the index would make any sense

alter_true.sql_

15
Stats Collection Tips and Techniques

Publishing Stats
• Once satisfied, you can make the stats visible to

optimizer
begin

dbms_stats.publish_pending_stats

('ARUP', 'SALES');

end;

• Now the USER_TABLES will show the correct stats
• Optimizer will use the newly collected stats
• Pending Stats will be deleted

publish.sql_

16
Stats Collection Tips and Techniques

New Stats make it Worse?
• Simply delete them

begin

dbms_stats.delete_pending_stats
('ARUP',‘SALES');

end;

• The pending stats will be deleted
• You will not be able to publish them

17
Stats Collection Tips and Techniques

Checking for Preferences
• You can check for the preference for publishing

stats on the table SALES:
select dbms_stats.get_prefs ('PUBLISH','ARUP','SALES') from dual;

DBMS_STATS.GET_PREFS('PUBLISH','ARUP','SALES')
--
FALSE

• Or, here is another way, with the change time:
select pname, valchar, valnum, chgtime
from optstat_user_prefs$
where obj# = (select object_id from dba_objects
where object_name = 'SALES’ and owner = 'ARUP')

PNAME VALCHAR CHGTIME
---------- ------- -----------------------------------
PUBLISH TRUE 02-MAR-10 01.38.56.362783 PM -05:00

18
Stats Collection Tips and Techniques

Other Preferences
• The table property is now set to FALSE
• You can set the default stats gathering of a whole

schema to pending
begin

dbms_stats.set_schema_prefs (
ownname => 'ARUP',
pname => 'PUBLISH',
pvalue => 'FALSE');

end;

• You can set it for the whole database as well
– dbms_stats.set_database_prefs

19
Stats Collection Tips and Techniques

Loading of Partitioned Tables

1. Load Partition P1
of Table

2. Rebuild Partition
P1 of the Local
Index

3. Repeat for all local
indexes

4. Collect stats

1. Load Partition P2
of Table

2. Rebuild Partition
P2 of the Local
Index

3. Repeat for all local
indexes

4. Collect stats

Collect Table Global Stats

1. You may want to make sure that the final table global stats are collected
after all partition stats are gathered

2. And all are visible to CBO at the same time

20
Stats Collection Tips and Techniques

Options
• You can postpone the stats collection of the

partitions to the very end
• But that means you will lose the processing window

that was available after the partition was loaded
• Better option: set the table’s stats PUBLISH

preference to FALSE
• Once the partition is loaded, collect the stat; but

defer the publication to the very end

21
Stats Collection Tips and Techniques

Defer Partition Table Stats

Time

O
rig

in
al

Time

Ch
an

ge
d

Table Loading

Index Building

Stats Collection

Stats visible
here

Stats visible
here

P1

P2

P3

P1

P2

P3

22
Stats Collection Tips and Techniques

Stats History
• When new stats are collected, they are maintained

in a history as well
• In the table SYS.WRI$_OPTSTAT_TAB_HISTORY
• Exposed through *_TAB_STATS_HISTORY
select to_char(stats_update_time,'mm/dd/yy hh24:mi:ss')
from user_tab_stats_history
where table_name = 'SALES‘;

TO_CHAR(STATS_UPD

03/01/10 21:32:57
03/01/10 21:40:38

hist.sql_

23
Stats Collection Tips and Techniques

Reinstate the Stats
• Suppose things go wrong
• You wish the older stats were present rather than

the newly collected ones
• You want to restore the old stats
begin

dbms_stats.restore_table_stats (
ownname => 'ARUP',
tabname => 'SALES',
as_of_timestamp => '14-SEP-13 11:59:00 AM'

);
end;

reinstate.sql_

24
Stats Collection Tips and Techniques

Exporting the Pending Stats
• First create a table to hold the stats

begin
dbms_stats.create_stat_table (

ownname => 'ARUP',
stattab => 'STAT_TABLE'

);
end;

• This will create a table called STAT_TABLE
• This table will hold the pending stats

cr_stattab.sql_

25
Stats Collection Tips and Techniques

Export the stats
• Now export the pending stats to the newly created

stats table
begin

dbms_stats.export_pending_stats (
tabname => 'SALES',
stattab => 'STAT_TABLE'

);
end;

• Now you can export the table and plug in these
stats in a test database
– dbms_stats.import_pending_stats

export.sql
del_stats.sql
import.sql_

26
Stats Collection Tips and Techniques

Some additional uses
• You can create a SQL Profile in your session

– With private stats
• Then this profile can be applied to the other queries
• You can create SQL Plan Management Baselines

based on these private stats
• Later you can apply these baselines to other

sessions

27
Stats Collection Tips and Techniques

Real Application Testing
• You can use Database Replay and SQL Performance Analyzer to recreate the

production workload
• But under the pending stats, to see the impact
• That way you can predict the impact of the new stats with your specific workload

28
Stats Collection Tips and Techniques

Sampling
• Estimate_Percent parameter of dbms_stats
begin

dbms_stats.gather_table_stats (

ownname => 'ARUP',

tabname => 'SALES',

estimate_percent => dbms_stats.auto_sample_size

);

end;

/

Stats Collection Tips and Techniques
29

Histograms
• Query

select … from customers where age = 35

• Should index be used?

Stats Collection Tips and Techniques
30

Age Count
-------- -----
Under 30 10%
30-40 80%
Over 40 10%

Age Count
-------- -----
Under 30 10%
30-40 80%
Over 40 10%

Age Count
-------- -----
Under 30 80%
30-40 10%
Over 40 10%

Age Count
-------- -----
Under 30 80%
30-40 10%
Over 40 10%

Age Count
-------- -----
Under 30 10%
30-35 10%
36-40 70%
Over 40 10%

Age Count
-------- -----
Under 30 10%
30-35 10%
36-40 70%
Over 40 10%

method_opt => 'for all columns size auto'

exec :ret := dbms_stats.report_col_usage
('ARUP','SALES');

Cardinality

Stats Collection Tips and Techniques
31

Number
of Rows

Number of
Distinct Values
of Col1

Number of
Distinct Values
of Col2

1 1

X X

Effect of Stats on Two Columns
• Optimizer Statistics on tables and indexes are vital

for the optimizer to compute optimal execution
plans

• If there are stats on two different columns used in
the query, how does the optimizer decide?

• It takes the selectivity of each column, and
multiplies that to get the selectivity for the query.

Stats Collection Tips and Techniques
32

Example
• Two columns

– Month of Birth: selectivity = 1/12
– Zodiac Sign: selectivity = 1/12

• What will be the selectivity of a query
– Where zodiac sign = ‘Pisces’
– And month of birth = ‘January’

• Problem:
– According to the optimizer it will be 1/12 × 1/12 = 1/144
– In reality, it will be 0, size the combination is not possible

• What will be the selectivity of a query
– Where zodiac sign = ‘Capricorn’
– And month of birth = ‘January’

Stats Collection Tips and Techniques
33

Multi-column Intelligence
• If the Optimizer knew about these combinations, it

would have been able to choose the proper path
• How would you let the optimizer learn about these?
• In Oracle 10g, we saw a good approach – SQL Profiles

– which allowed data to be considered for execution plans
– but was not a complete approach
– it still lacked a dynamism – applicability in all circumstances

• In 11g, there is an ability to provide this information to
the optimizer
– Multi-column stats

Stats Collection Tips and Techniques
34

An Example

cr_bookings.sql
cr_indx.sql
ins_bookings.sql
stats.sql
vals.sql

HOTEL_ID RATE_CODE COUNT(1)
---------- ---------- ----------

10 11 444578
10 12 50308
20 22 100635
20 23 404479

• Table BOOKINGS
• Index on (HOTEL_ID,

RATE_CODE)
• What will be plan for the

following?
select min(book_txn)
from bookings
where hotel_id = 10
and rate_code = 23

Stats Collection Tips and Techniques
35

The Plan

Here is the plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	10	769 (3)	00:00:10
1	SORT AGGREGATE		1	10		
* 2	TABLE ACCESS FULL	BOOKINGS	199K	1951K	769 (3)	00:00:10

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT

2 - filter("RATE_CODE"=23 AND "HOTEL_ID"=10))

• It didn’t choose index scan
• The estimated number of rows are 199K, or about 20%;

so full table scan was favored over index scan

expl1.sql

Stats Collection Tips and Techniques
36

Solution
• Create Extended Stats in the related columns –

HOTEL_ID and RATE_CODE
var ret varchar2(2000)
begin
:ret := dbms_stats.create_extended_stats(
'ARUP', 'BOOKINGS','(HOTEL_ID, RATE_CODE)'

);
end;
/
print ret

• The variable “ret” shows the name of the extended
statistics

xstats.sql

Stats Collection Tips and Techniques
37

Then Collect Stats Normally
begin
dbms_stats.gather_table_stats (

ownname => 'ARUP',
tabname => 'BOOKINGS',
estimate_percent=> 100,
method_opt => 'FOR ALL COLUMNS SIZE SKEWONLY',
cascade => true

);
end;
/

stats.sql

Stats Collection Tips and Techniques
38

The Plan Now

• After extended stats, the plan looks like this:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	10	325 (1)	00:00:04
1	SORT AGGREGATE		1	10		
2	TABLE ACCESS BY INDEX ROWID	BOOKINGS	23997	234K	325 (1)	00:00:04
* 3	INDEX RANGE SCAN	IN_BOOKINGS_01	23997		59 (0)	00:00:01

• Note:
– No of Rows is now more accurate
– As a result, the index scan was chosen expl1.sql

Stats Collection Tips and Techniques
39

Extended Stats
• Extended stats store the correlation of data among

the columns
– The correlation helps optimizer decide on an execution

path that takes into account the data
– Execution plans are more accurate

• Under the covers,
– extended stats create an invisible virtual column
– Stats on the columns collects stats on this virtual column

as well

Stats Collection Tips and Techniques
40

10053 Trace

Single Table Cardinality Estimation for BOOKINGS[BOOKINGS]
Column (#2):
NewDensity:0.247422, OldDensity:0.000000 BktCnt:1000000,

PopBktCnt:1000000, PopValCnt:2, NDV:2
Column (#3):
NewDensity:0.025295, OldDensity:0.000000 BktCnt:1000000,

PopBktCnt:1000000, PopValCnt:4, NDV:4
Column (#5):
NewDensity:0.025295, OldDensity:0.000000 BktCnt:1000000,

PopBktCnt:1000000, PopValCnt:4, NDV:4
ColGroup (#1, VC) SYS_STU4JHE7J4YQ3ZLDXSW5L1O8KX
Col#: 2 3 CorStregth: 2.00

ColGroup Usage:: PredCnt: 2 Matches Full: Using density:
0.025295 of col #5 as selectivity of unpopular value pred

Stats Collection Tips and Techniques
41

Extended Stats
• This hidden virtual column shows up in column

statistics
select column_name, density, num_distinct
from user_tab_col_statistics
where table_name = 'BOOKINGS‘

COLUMN_NAME DENSITY NUM_DISTINCT
------------------------------ ---------- ------------
BOOKING_ID .000001 1000000
HOTEL_ID .0000005 2
RATE_CODE .0000005 4
BOOK_TXN .002047465 2200
SYS_STU4JHE7J4YQ3ZLDXSW5L1O8KX .0000005 4

Stats Collection Tips and Techniques
42

Tabcolstats.sql

Checking for Extended Stats
• To check the presence of extended stats, check the

view dba_stat_extensions.

select extension_name, extension
from dba_stat_extensions
where table_name='BOOKINGS';

Output:
EXTENSION_NAME EXTENSION
------------------------------ ------------------------
SYS_STU4JHE7J4YQ3ZLDXSW5L1O8KX ("HOTEL_ID","RATE_CODE")

check.sql

Stats Collection Tips and Techniques
43

Deleting Extended Stats

• If you want, you can drop the extended stats, you
can use the dbms_stats package, specifically the
procedure drop_exteneded_stats

begin
dbms_stats.drop_extended_stats (

ownname => 'ARUP',
tabname => 'BOOKINGS',
extension => '("HOTEL_ID","RATE_CODE")'

);
end;

drop.sql

Stats Collection Tips and Techniques
44

Another way
• You can collect the extended stats using the normal

dbms_stats as well:
begin

dbms_stats.gather_table_stats (
ownname => 'ARUP',
tabname => 'BOOKINGS',
estimate_percent => 100,
method_opt =>

'FOR ALL COLUMNS SIZE SKEWONLY FOR COLUMNS
(HOTEL_ID,RATE_CODE)',

cascade => true
);

end;
/ startx.sql

Stats Collection Tips and Techniques
45

The Case on Case Sensitivity
• A table of CUSTOMERS with 1 million rows
• LAST_NAME field has the values

– McDonald – 20%
– MCDONALD – 10%
– McDONALD – 10%
– mcdonald – 10%

• They make up 50% of the rows, with the variation of
the same name.

• When you issue a query like this:
select * from customers where upper(last_name) = 'MCDONALD'

Stats Collection Tips and Techniques
46

Normal Plan

• The plan looks like this:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 10000 | 498K| 2140 (2)| 00:00:26 |
|* 1 | TABLE ACCESS FULL| CUSTOMERS | 10000 | 498K| 2140 (2)| 00:00:26 |

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT

1 - filter(UPPER("LAST_NAME")='MCDONALD')

No of rows
wrongly
estimated

expl2.sql

Stats Collection Tips and Techniques
47

Extended Stats
• You collect the stats for the UPPER() function
begin
dbms_stats.gather_table_stats (

ownname => 'ARUP',
tabname => 'CUSTOMERS',
method_opt => 'for all columns

size skewonly for columns
(upper(last_name))'

);
end; statsx_cust.sql

Stats Collection Tips and Techniques
48

With Extended Stats

• The plan is now:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 500K| 33M| 2140 (2)| 00:00:26 |
|* 1 | TABLE ACCESS FULL| CUSTOMERS | 500K| 33M| 2140 (2)| 00:00:26 |

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT

1 - filter("CUSTOMERS"."SYS_STUJ6BPFDTE396EPTURAB2DBI5"='MCDONALD')

No of rows
correctly
estimated

Extended stats
name come hereexpl2.sql

Stats Collection Tips and Techniques
49

Alternatives
• Remember, the extended stats create a virtual

column – hidden from you
• You can have the same functionality as extended

stats by defining virtual columns
• Advantage

– You can have a column name of your choice
– You can index it, if needed
– You can partition it
– You can create Foreign Key constraints on it

Stats Collection Tips and Techniques
50

Restrictions
• Has to be 11.0 or higher
• Not for SYS owned tables
• Not on IOT, clustered tables, GTT or external tables
• Can’t be on a virtual column
• An Expression

– can’t contain a subquery
– must have ≥1 columns

• A Column Group
– no of columns should be ≤32 and ≥2
– can’t contain expressions
– can‘t have the same column repeated

Stats Collection Tips and Techniques
51

Column Usage
SQL> select
dbms_stats.report_col_usage('ARUP','ACCOUNTS') from
dual;

DBMS_STATS.REPORT_COL_USAGE('ARUP','ACCOUNTS')

--

LEGEND:

.......

EQ : Used in single table EQuality predicate

RANGE : Used in single table RANGE predicate

LIKE : Used in single table LIKE predicate

NULL : Used in single table is (not) NULL predicate

EQ_JOIN : Used in EQuality JOIN predicate

NONEQ_JOIN : Used in NON EQuality JOIN predicate

FILTER : Used in single table FILTER predicate

JOIN : Used in JOIN predicate

GROUP_BY : Used in GROUP BY expression

...

###

COLUMN USAGE REPORT FOR ARUP.ACCOUNTS

.....................................

1. ACCNO : EQ

Stats Collection Tips and Techniques
52

Thank You!

My Blog: arup.blogspot.com
My Tweeter: arupnanda

Stats Collection Tips and Techniques 53

