
SQL Tuning Without
Trying
Arup Nanda

Longtime Oracle DBA

Scenario

SQL Tuning Without Trying
2

• Situation:
– Query from hell pops up, brings the DB to its knees
– DBA is blamed for the failure

• Aftermath
– DBA: “Developer should have taken care of this.”
– Developer: “Why is the DBA not aware of this problem?”
– Manager: “DBA will review all queries and approve

them.”

• Challenge
– What is the most efficient way to manage this process?

Why Good SQLs Go Bad
• Missing, Incomplete or Inaccurate Statistics

• Improper or Lack of Indexing

• Bad Syntax
– WHERE COL1+20 = COL2

– WHERE UPPER(COL1) = ‘XYZ’

• High Demand for Data Buffers

• Bind peeking

• Upgrades, patches

SQL Tuning Without Trying
3

Solutions
• Adding or Correcting Indexing

– Index Absent
– Proper Index- B-tree? Bitmap? Unique?

• Rewriting the SQL
– e.g. col1+10=:v1 becomes col1=:v1-10
– Nested Loop to Hash Join

• Reduce I/O
– Materialized Views
– Partitioning

• Collect Accurate Statistics
• Put Hints
• Create Outlines

SQL Tuning Without Trying
4

Challenges
• Tough to determine why plans go bad, at least quickly
• Requires development skills

– Not typical DBA skills

• Volume of statements to tune
• Time

– Almost always reactive
– Do it now. Under pressure!

• Not in the loop for application deployment
• Code can’t be changed, i.e. no hints
• Lack of Testing

– Time
– Resources

SQL Tuning Without Trying
5

SQL Profile
• Hints are automatically added to queries

• Gives more information about the accessed objects, data, etc.
<outline_data>

<hint><![CDATA[BEGIN_OUTLINE_DATA]]></hint>

<hint><![CDATA[IGNORE_OPTIM_EMBEDDED_HINTS]]></hint>

<hint><![CDATA[OPTIMIZER_FEATURES_ENABLE('11.2.0.3')]]></hint>

<hint><![CDATA[DB_VERSION('11.2.0.3')]]></hint>

<hint><![CDATA[OPT_PARAM('optimizer_dynamic_sampling' 7)]]></hint>

<hint><![CDATA[ALL_ROWS]]></hint>

<hint><![CDATA[OUTLINE_LEAF(@"SEL$2")]]></hint>

<hint><![CDATA[OUTLINE_LEAF(@"SEL$1")]]></hint>

<hint><![CDATA[NO_ACCESS(@"SEL$1" "from$_subquery$_001"@"SEL$1")]]></hint>

<hint><![CDATA[INDEX_RS_ASC(@"SEL$2" "CH"@"SEL$2" (“T1".“COL1“ “T1".“COL2“
“T1".“COL3"))]]></hint>

<hint><![CDATA[OPT_ESTIMATE(@”SEL$1″, TABLE, “T”@”SEL$1″, SCALE_ROWS=0.15")]]></hint>
<hint><![CDATA[END_OUTLINE_DATA]]></hint>

</outline_data>
SQL Tuning Without Trying

6

How Oracle Selects a Profile

SQL Tuning Without Trying
7

profile1 profile2
35 secs 17 secs Profile 2 is better

profile1 profile2
Never
finishes

17 secs Risky execution

profile1

profile2

35 secs

17 secs

Profile 2 is better

Parallel
execution

SQL Tuning Without Trying
8

profile1 profile2

Doesn’t
finish

No winner

15 secs

Doesn’t
finish

profile1 profile2

Doesn’t
finish

Profile 2 is better

30 secs

Finishes in
17 secs

30 secs

15 secs

Adding SQL Profiles?
• You add it by a tool “SQL Tuning Advisor”
• What it is:

– A built-in tool for SQL Tuning
– Can suggest alternatives, some pretty good

• Suggests:
– Indexes
– Rewriting
– Materialized Views
– Partitioning
– Statistics
– SQL Profiles
– Baselines

SQL Tuning Without Trying
9

SQL Tuning Advisor
• From Top Menu -> Administration -> Oracle

Scheduler -> Automated Maintenance Tasks

SQL Tuning Without Trying
10

Automatic
• Automatic since Oracle 11g

• Or, from Top Menu -> Performance -> Advisor
Home -> SQL Advisors

SQL Tuning Without Trying
11

Automatic SQL Tuning

SQL Tuning Without Trying
12

SQL Tuning Without Trying
13

SQL Tuning Without Trying
14

Shows the comparison of plans before
and after SQL Profile

Enhancement Comparison

SQL Tuning Without Trying
15

Compare Plans

SQL Tuning Without Trying
16

Shows that the plan steps are
different as a result of SQL Profile

Alternative Plans

SQL Tuning Without Trying
17

Creates a BASELINE

Why only Profiles in Auto?
• Setup is quick

– e.g. building an index takes time

• SQL does not need to change

• Testing localized to SQL only—effective

• Don’t like it? Easily undone.

• Can be private, using SQL Tune Category

SQL Tuning Without Trying
18

More on Auto Profiles Tests
• Default Behavior

– Uses MAINTENANCE_WINDOW_GROUP

– SQL profiles are generated but not implemented

• You can configure
– If, when, how long

– Resources allowed to use

– If profiles are automatically accepted

– How many profiles it implements

SQL Tuning Without Trying
19

SQL Profiles or Baselines
SQL Profiles Baselines

Reactive Proactive

Bad plan. Fix applied Good Plan. Plan Fixed

Works by storing additional information about
cardinality

Works by storing the plan. Cardinality is not the
primary factor

Provides additional data to Optimizer Helps Optimizer to choose from choices

No specific plan Only the set of plans

When data changes are dramatic, this is a
better approach

When data changes are dramatic, difficult

One execution is enough to generate profile More than one execution is required for
capture the baseline

Can still be valid if the access structures
change

May not be valid when access structures
change

SQL Tuning Without Trying
20

Realtime SQL Monitoring
• From SQL Menu, Plan

– Automatically monitors long running SQL
– Shows the statistics and resources consumed at each step

of the plan.
– Shows actual cardinality at each step, helps resolve

problems with poor cardinality estimates

• Exposes monitoring statistics
– Plan operation level
– Parallel Execution level
– I/O, CPU, memory, network
– Exadata Smart Scans

SQL Tuning Without Trying
21

Very Useful Tool:
Active Reports

Active Reports without EM
• Built-In Functions Returning Report as CLOB

– SQL Details dbms_perf.report_session
– SQL Monitor dbms_sqltune.report_sql_monitor_list
– SQL Perf Analyzer dbms_sqlpa.report_analysis_task
– Performance Hub dbms_perf.report_perfhub

• Example
set pages 0 linesize 32767 trimspool on
set long 1000000 longchunksize 10000000
spool rep.html
select dbms_perf.report_perfhub (is_realtime=>1,
type=>'active') from dual;

SQL Tuning Without Trying
22

Don’t Like GUI?
• Package DBMS_SQLTUNE Functions

SQL Tuning Without Trying
23

Function Description
CREATE_TUNING_TASK Creates a tuning task

• For a single SQL, a group of SQLs
• For SQL text, or SQL_ID
• From an SQL Tuning Set

EXECUTE_TUNING_TASK Executes the task
• The parameters are defined here

REPORT_TUNING_TASK Reports the findings

SCRIPT_TUNING_TASK Implement the results. Creates a script to be implemented by
SQL*Plus

Non-GUI Auto
• Package DBMS_AUTO_SQLTUNE

SQL Tuning Without Trying
24

Function Description
SET_AUTO_TUNING_TASK_PARAMETER Change the default parameters

EXECUTE_AUTO_TUNING_TASK Executes the task
• The parameters are defined here

REPORT_AUTO_TUNING_TASK Reports the findings

Sources for Tuning Set

SQL Tuning Without Trying
25

Source How to Get from it

Shared pool SELECT_CURSOR_CACHE ()

From AWR Repository SELECT_WORKLOAD_REPOSITORY ()

Oracle Trace Files SELECT_SQL_TRACE ()

SQL Performance Analyzer task
comparison results

SELECT_SQLPA_TASK ()

Another SQL Tuning Set SELECT_SQLSET ()

All functions are in DBMS_SQLTUNE package

Takeaways
• Enable SQL Tuning Advisor to run automatically

• Disable automatic application of SQL Profiles

• Check recommendations and apply them from one
screen
– In small databases, may want to enable automatic

application of profiles

• Use Realtime Monitoring to find out issues at
specific steps

• Generate Active Reports to explain database issues

SQL Tuning Without Trying
26

Thank You!

Blog: arup.blogspot.com
Tweeter: @arupnanda
Facebook.com/ArupKNanda

27SQL Tuning Without Trying

