Latches Demystified

Arup Nanda
Longtime Oracle DBA

What is a “Latch”

From “Glossary” in Oracle Manuals:

A low-level serialization control
mechanism used to protect shared data
structures ...

Demystifying Latches

Agenda

» What are latches — the purpose
* Buffer cache latches
 Shared pool latches

* |dentifying latch waits

» When the database is hung
 Plenty of demos.

Latches

If process 1 and 2 both go after the memory area at the same time,
they will end up corrupting the area.
Who makes sure they get their turns?

Latches

" Process 1

<@ Process 1 and 2 will try to get the “latch”, a area in memory
that does not have any required data.

<" Whoever gets the latch now gets to access the memory area
exclusively

<" When done, the process releases the latch

Demystifying Latches

Spinning and Sleeping

 Suppose process 1 gets the latch, accesses the memory

» How will process 2 know when the latch is available?
— No central latch repository
— No communication to the process

 Process 2 will constantly loop to check if the latch is free
 This is called spinning — a CPU intensive process

o After ntimes, it will stop spinning and will go to sleep
— n=_spin_count in init.ora, defaults to 2000

o After that it will wake up after 1 ms, check, go to sleep
» Check again in 1ms, sleep, then check in 2 ms, sleep ...

Demystifying Latches

Latches

100 or 200 bytes memory in SGA (depending on 32 or 64 bit Oracle)
* Value depends on how it has been taken

Latch 123 Latch 123

0 X F F count
Untaken Exclusive Sharable; Sharable;
but taken taken by

exclusively many

Demystifying Latches

processes -

Information on Latches

» V$LATCH - latch
e VSLATCH_CHILDREN - the child latches
o VS$LATCH_PARENT - the parent latches

» V$SLATCHHOLDER - the holder of latches
— PID - the process ID
— SID - the session SID
— LADDR - the address of the latch
— NAME - name of the latch
— GETS - how many times it got the latch

Demystifying Latches

Latches -vs- Locks

Latches

Locks

On physical components like memory and
CPU

On logical structures like rows

No queues

Queues

No ordering

No ordering

When multiple processes compete for the
same resource; no guarantee on which one
gets it

The sessions get the lock in the order they
wait

Demystifying Latches

Database Instance

O | | t System Global Area (SGA) Free Memory
raC e n S an Ce Shared Pool Large Pool IO Buffer Area
Library Cache u}] L HEn
Shared SQL Private
Area ‘ SQL Area - u " H 0 m
u (] (=]
+—>[swon]
gata gerwir Cther ﬁe&lerueﬂ Response| | Request
ictianary 5 00 Queus Queue -
Cache Cache My | RECO

«— [mon]

Database i
Fixed Java Streams
Buffer Cache SGA Pool P00l | e
_'_I-

Background

Processes
I v v
PGA

r
s<::n_ Work me:as Server

|Dawn| |CKPT| |LGWH| |Anc::] |HVWH|

Session Memory l

Private S;OL Area |

Source: Oracle Database Documentation Concepts Guide

Client
Process

Demystifying Latches

10

Buffer Operation

o et b b
N N D e
@ [ZEE
i &1 1 e e
SELECT \\\7 Buffer Cache ///
FROM EMP '
WHERE ..

Buffer Operation
T 1)
N = e e
2 2 s e f s
s s e f s
Data Block SELECT .. \ Sulfer cache /

FROM EMP
WHERE ...

Buffer Insertion
M =
L

Buffer Header

N ‘m 2\

“TTTEE
o T EET
. BRI
I 1 = e

_ Shared Pool / \ Buffer Cache /

X$BH
V$BH

Buffer Header Management TS
i] D
HEHEHA D
“,,,“h““

Linked List

e ey o)

When a new buffer comes in, only the pointers are updated

Buffer Cache

RAFID NANQSF

Linked List

Test for Buffer Header

select
ltrimCaddr, '@') buffer_address,
ltrim(nxt_hash,'@') next_buffer,
1trim(prv_hash,'@') prev_buffer,
case
when nxt_hash = prv_hash then 'Unlinked'
else
'Linked"’
end
as linked
from x$bh
where hladdr = '000007FF3C8B1568"'

bhl.sql

Buffer Cache

Lateh
VAN

Catch Buffer Chain (CBC) Latch

Latches and Hash Chains

Hash
Chain
Latch

@ — v aTeaza

No. of hash buckets = init.ora parameter _db_block_hash_buckets
No. of latches = db_block hash_latches

Identifying Buffer Latches

* Demo

* Find out the rows and blocks - gsales.sql

 Find out the data object id — dobjid.sql

 Find out the data block address — dbal.sq|

* Find out the child latch address — hladdrl.sql

* Find out the partition name — extents1.sq|

* Find out the objects protected by a latch - latchobjs.sql
* Find out the total buffers per latch — clatchcount.sq|

Demystifying Latches .

Identifying CBC Latch Contention

« EVENT column in VESESSION shows “%cache buffer%’
 Also in VSACTIVE_SESSION_HISTORY

« Find out the history — ashlatch.sql

 Convert to hex — tohex.sql

* Blog entry http://arup.blogspot.com/2014/11/cache-buffer-chains-
demystified.html

Demystifying Latches
22

Library Cache Latches

|
-:\IAME FROM EMP

‘ FROM .. "SEL

|
|
\ Shared Pool /

Library Cache Latch Modes

Latch1

.
=

PIN

Demo

Create procedure — cr_testproc.sql
Session 1
— exec testproc (300)

Session 2
— alter procedure testproc compile;

» Session 3 (SYS Session):

select sid, state, blocking_session, seconds_in_wait,
event, pl, pltext, plraw from v$session where username =

‘SCOTT’

Demystifying Latches

waitl.sql

25

Decoding Library Cache

 Xx$kgllk — Locks
— kgllkhdl - the lock handle (address)
— Kgllkent — the number of locks
— Kgllkmod — mode of the lock
— Kgllkreq - the requested mode on that lock

* x$kglob ob - Objects
— kglnaown - owner
— Kglnaobj — name
— Kglhdadr - the latch address

e x$ksuse — Sessions
— _Indx—the.session.SID

Demystifying Latches

26

Check Library Cache

select
s.sid,
ob.kglnaown obj_owner,
ob.kglnaobj obj_name,
lk.kgllkecnt lck_cnt,
lk.kgllkmod lock_mode,
lk.kgllkreq lock_req,
s.state, s.event, s.wait_time, s.seconds_in_wait
from
x$kgllk 1k, x$kglob ob, x$ksuse ses, v¥session s
where 1lk.kgllkhdl 1in
(select kgllkhdl from x$kgllk where kgllkreq > 0)
and ob.kglhdadr = 1lk.kgllkhdl
and lk.kgllkuse = ses.addr

. . libcachel.sql
and_s.sid. = ses.indx; a

Demystifying Latches

27

Mutex

 Latches contain much more information sometimes not needed
e Mutex = Mutual Exclusion

* Mutextes
— are smaller than latches, 28 bytes instead of 110 bytes
— take less number of instruction: ~30 instead of ~150

Demystifying Latches

28

Summary

* Latches are just memory structures in SGA

Provide a locking mechanism for buffer headers, library cache objects, etc.
No queueing. First come first serve

X$ and V$ views show the latch activity

If you see a latch contention,
— Buffer latch: too much buffer access
— Shared pool latch: too much concurrent access to objects

Thank You!

Blog: arup.blogspot.com
Tweeter: @ArupNanda
Facebook.com/ArupKNanda

