
REMINDER
Check in on the

COLLABORATE mobile app

Demystifying Cache Buffer Chains

Arup Nanda
Longtime Oracle DBA
Twitter @ArupNanda
Blog aarup.blogspot.com
Facebook.com/ArupKNanda

Session 431

Agenda

■ How buffer cache works
■ How buffers are populated
■ Buffer states and versioning
■ How buffers are flushed
■ Role of Cache Buffer Chain latch
■ Reducing CBC Latches
■ Other kinds of latches

SQL> select state, event from v$session where sid = 123;

STATE EVENT
------- ---------------------------
WAITING latch: cache buffers chains

Database and Instance

update EMP
set NAME = ‘ROB’
where EMPNO = 1

Storage

Host

Shared Pool

Parsed cursor

Buffer Cache

EMPNO NAME
1 ADAM
2 BOB

True or False: Buffer = Block?

Buffer Cache

Buffer and Block

Buffer Cache

Buffer and Block

Buffer Insertion

10 20 30 25

10 20 25 30

When buffer# 25 comes in, the buffer# 30 has to be moved to make
room for it. Not a desirable function.
Similarly when buffer# 20 is deleted, all the buffers after it, i.e. 25
and 30 must be moved left. Not desirable either.

Buffer Management

10 20 30
20 3010 20

10 20 25
20 2510 3020

30
25

Each buffer has a prior and a next pointer that shows the next buffer in this
list. This is known as a linked list.

When a new buffer comes in, only the pointers are updated

Buffer Cache

Buffer Header

Shared Pool

Actual Buffers

Buffer Headers

Buffer Chains

1 2 3 4 5

1 2 3 4 5 6 7

1 2 3 4 5 6

Chain 1

Chain 2

Chain 3

Hash
buckets

Number of hash buckets is determined by
_db_block_hash_buckets

Walking the Chain

1 2 3 4 5

1 2 3 4 5 6 7

1 2 3 4 5 6

Chain 1

Chain 2

Chain 3

Data Block Address

■ Get the relative file# and block#
select

col1,

dbms_rowid.rowid_relative_fno(rowid) rfile#,

dbms_rowid.rowid_block_number(rowid) block#

from cbctest;

■ Get the DBA
select dbms_utility.make_data_block_address(file#,block#)
from dual;

Multi-versioning

1L1 3 2 4 1a

Current
version of
the block

Changed

1L1 3 2 4 1a 1b

Buffer 1
was
updated

Buffer 1
was
updated
once more

Buffer States

■ The buffer can be retrieved in two modes
▪ Consistent Read (CR)
▪ Intention is to read, as of a specific SCN
▪ Current
▪ Intention is to modify

■ There can be several CR copies of a block
■ There can be only one current copy

Buffer States in RAC

■ For a specific block:
▪ One Current copy in an instance
▪ Many CR copies in an instance
▪ If current copy exists on many instances,

Latches

Process 1 Process 2

 Process 1 and 2 will try to get the “latch”, a area in memory that does not
have any required data.

 Whoever gets the latch now gets to access the memory area exclusively
 When done, the process releases the latch

Latch

More about Latches

■ Suppose process 1 gets the latch, accesses the memory
■ How will process 2 know when the latch is available?

▪ No central latch repository
▪ No communication to the process

■ Process 2 will constantly loop to check if the latch is free
■ This is called spinning – a CPU intensive process
■ After n times, it will stop spinning and will go to sleep

▪ n = _spin_count in init.ora, defaults to 2000
■ After that it will wake up after 1 ms, check, go to sleep
■ Check again in 1ms, sleep, then check in 2 ms, sleep …

Linking/Unlinking

1 2 3 4 5

1 2 3 4 5 6

1 2 3 4 5 6

Chain 1

Chain 2

Chain 3

77 Unlink

LinkLatch

Latch

Latch

Cache Buffer Chain Latch
_db_block_hash_latches

Parent and Child CBC Latch

■ To find the latch protecting the hash chain
select hladdr

from x$bh where dbarfil = 6 and dbablk = 220;

1 2 3 4 5

1 2 3 4 5 6 7

1 2 3 4 5 6

Chain 1

Chain 2

Chain 3

Latch
1

Latch
2

Pare
nt

CBC Latches

■ Find the Latch
select latch# from v$latch

where name = 'cache buffers chains';

203

■ This is the parent latch
■ Child Latches

SQL> select count(1) from v$latch_children

where latch# = 203;

16384

■ Checking the hash buckets and CBC latches:
_db_block_hash_buckets 524288

_db_block_hash_latches 16384

Diagnosis of CBC Latch Waits

■ Check the P1, P2, P3 values
select p1, p1raw, p1text
from v$session where sid = 366;

■ Result
P1 P1RAW P1TEXT
---------- ---------------- -------
5553027696 000000014AFC7A70 address

■ Get the latch information:
SQL> select gets, misses, sleeps, name
2 from v$latch where addr = '000000014AFC7A70';

GETS MISSES SLEEPS NAME
----- ------ ------ --------------------
49081 14 10 cache buffers chains

■ This confirms that this is a CBC Latch

Identify the Object

■ Get the File# and Block#
select dbarfil, dbablk, tch
from x$bh
where hladdr = '000000014AFC7A70';
DBARFIL DBABLK TCH
------- ------ -----

6 220 34523

■ Dump the block
alter system dump

datafile 6 block min 220 block max 220;

■ Get the object
SQL> select object_name

2 from dba_objects
3 where object_id = 93587;

OBJECT_NAME
--
CBCTEST

Start dump data blocks tsn: 4 file#:6 minblk 220 maxblk 220
Block dump from cache:
Dump of buffer cache at level 4 for pdb=0 tsn=4 rdba=25166044
BH (0x7ff72f6b918) file#: 6 rdba: 0x018000dc (6/220) class: 1
ba: 0x7ff7212a000

set: 12 pool: 3 bsz: 8192 bsi: 0 sflg: 0 pwc: 39,28
dbwrid: 0 obj: 93587 objn: 93587 tsn: [0/4] afn: 6 hint: f

Reducing CBC Latches

■ Reduce Logical IO
■ Avoid Nested Loops

▪ NLs visit the same blocks several times

1 2 3 4 5

1 2 3 4 5 6

1 2 3 4 5 6

Chain 1

Chain 2

Chain 3

77 Unli
nk

LinkLatc
h

Latc
h

Latc
h

Latc
h

Latc
h

Latc
h

App Visiting Same Data

■ Example
for i in 1..100000 loop

select …

into l_var

from tablea

where …;

exit when sql%notfound;

end loop;

■ Workaround
▪ Collections
▪ Bulk Collect into Collections

Identify the Hot Objects

■ Find from ASH
select p1raw,event,count(*)

from v$active_session_history

where sample_time < sysdate – 1/24

and event = 'latch: cache buffers chain'

group by event, p1raw

order by 3 desc;

■ Find the object
select o.name, bh.dbarfil, bh.dbablk, bh.tch
from x$bh bh, sys.obj$ o
where tch > 0
and hladdr=‘<p1raw value>’
and o.obj#=bh.obj
order by tch;

Reducing Hotness

■ Reduce Logical IO
■ Reduce Nested Loops
■ Reduce Contention

▪ Unpack blocks
▪ Partition
▪ If index, hash partition global index

Summary

■ Buffer cache starts with empty buffers to be filled with blocks
■ Buffers are not moved around; the headers are updated
■ Buffer headers are linked to a hash chain and unlinked
■ To link/unlink a buffer to/from a chain, a latch is needed
■ This latch is called cache buffer chain latch
■ X$BH and V$BH shows the buffer headers
■ X$BH.HLADDR shows the latch address
■ V$LATCH shows the latch, LATCH# is the identifier
■ V$LATCH_CHILDREN shows the child latches
■ A smaller number of latches protect all the buffers
■ When the latch is not available, the session waits
■ The more popular the buffer the more the CBC Latch wait

Thank You!
Session 431

Blog: arup.blogspot.com
Twitter: @ArupNanda
Facebook.com/ArupKNanda

