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Agenda

■ How buffer cache works
■ How buffers are populated
■ Buffer states and versioning
■ How buffers are flushed
■ Role of Cache Buffer Chain latch
■ Reducing CBC Latches
■ Other kinds of latches

SQL> select state, event from v$session where sid = 123;

STATE   EVENT
------- ---------------------------
WAITING latch: cache buffers chains



Database and Instance

update EMP
set NAME = ‘ROB’
where EMPNO = 1

Storage

Host

Shared Pool

Parsed cursor

Buffer Cache

EMPNO NAME
1              ADAM
2              BOB

True or False: Buffer = Block?



Buffer Cache

Buffer and Block



Buffer Cache

Buffer and Block



Buffer Insertion

10 20 30 25

10 20 25 30

When buffer# 25 comes in, the buffer# 30 has to be moved to make 
room for it. Not a desirable function.
Similarly when buffer# 20 is deleted, all the buffers after it, i.e. 25 
and 30 must be moved left. Not desirable either.



Buffer Management
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Each buffer has a prior and a next pointer that shows the next buffer in this 
list. This is known as a linked list.

When a new buffer comes in, only the pointers are updated



Buffer Cache

Buffer Header

Shared Pool
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Buffer Headers



Buffer Chains
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Hash 
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Number of hash buckets is determined by 
_db_block_hash_buckets



Walking the Chain
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Data Block Address

■ Get the relative file# and block#
select

col1,

dbms_rowid.rowid_relative_fno(rowid) rfile#,

dbms_rowid.rowid_block_number(rowid) block#

from cbctest;

■ Get the DBA
select dbms_utility.make_data_block_address(file#,block#) 
from dual;



Multi-versioning

1L1 3 2 4 1a

Current 
version of 
the block

Changed
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Buffer 1 
was 
updated

Buffer 1 
was 
updated 
once more



Buffer States

■ The buffer can be retrieved in two modes
▪ Consistent Read (CR)
▪ Intention is to read, as of a specific SCN
▪ Current 
▪ Intention is to modify

■ There can be several CR copies of a block
■ There can be only one current copy



Buffer States in RAC

■ For a specific block:
▪ One Current copy in an instance
▪ Many CR copies in an instance
▪ If current copy exists on many instances,



Latches

Process 1 Process 2

 Process 1 and 2 will try to get the “latch”, a area in memory that does not 
have any required data. 

 Whoever gets the latch now gets to access the memory area exclusively
 When done, the process releases the latch

Latch



More about Latches

■ Suppose process 1 gets the latch, accesses the memory
■ How will process 2 know when the latch is available?

▪ No central latch repository
▪ No communication to the process

■ Process 2 will constantly loop to check if the latch is free
■ This is called spinning – a CPU intensive process
■ After n times, it will stop spinning and will go to sleep

▪ n = _spin_count in init.ora, defaults to 2000
■ After that it will wake up after 1 ms, check, go to sleep
■ Check again in 1ms, sleep, then check in 2 ms, sleep …



Linking/Unlinking
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Cache Buffer Chain Latch
_db_block_hash_latches



Parent and Child CBC Latch

■ To find the latch protecting the hash chain
select hladdr

from x$bh where dbarfil = 6 and dbablk = 220;
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CBC Latches

■ Find the Latch
select latch# from v$latch

where name = 'cache buffers chains';

203

■ This is the parent latch
■ Child Latches

SQL> select count(1) from v$latch_children

where latch# = 203;

16384

■ Checking the hash buckets and CBC latches:
_db_block_hash_buckets 524288

_db_block_hash_latches 16384



Diagnosis of CBC Latch Waits

■ Check the P1, P2, P3 values
select p1, p1raw, p1text
from v$session where sid = 366;

■ Result
P1         P1RAW            P1TEXT
---------- ---------------- -------
5553027696 000000014AFC7A70 address

■ Get the latch information:
SQL> select gets, misses, sleeps, name
2  from v$latch where addr = '000000014AFC7A70';

GETS  MISSES SLEEPS NAME
----- ------ ------ --------------------
49081     14     10 cache buffers chains

■ This confirms that this is a CBC Latch



Identify the Object

■ Get the File# and Block#
select dbarfil, dbablk, tch
from x$bh
where hladdr = '000000014AFC7A70';
DBARFIL DBABLK TCH
------- ------ -----

6    220 34523

■ Dump the block
alter system dump 

datafile 6 block min 220 block max 220;

■ Get the object
SQL> select object_name

2 from dba_objects
3 where object_id = 93587;

OBJECT_NAME
----------------------------------------
CBCTEST

Start dump data blocks tsn: 4 file#:6 minblk 220 maxblk 220
Block dump from cache:
Dump of buffer cache at level 4 for pdb=0 tsn=4 rdba=25166044
BH (0x7ff72f6b918) file#: 6 rdba: 0x018000dc (6/220) class: 1 
ba: 0x7ff7212a000

set: 12 pool: 3 bsz: 8192 bsi: 0 sflg: 0 pwc: 39,28
dbwrid: 0 obj: 93587 objn: 93587 tsn: [0/4] afn: 6 hint: f



Reducing CBC Latches

■ Reduce Logical IO
■ Avoid Nested Loops 

▪ NLs visit the same blocks several times
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App Visiting Same Data

■ Example
for i in 1..100000 loop

select …

into l_var

from tablea

where …;

exit when sql%notfound;

end loop;

■ Workaround
▪ Collections
▪ Bulk Collect into Collections



Identify the Hot Objects

■ Find from ASH
select p1raw,event,count(*) 

from v$active_session_history

where sample_time < sysdate – 1/24 

and event = 'latch: cache buffers chain' 

group by event, p1raw 

order by 3 desc;

■ Find the object
select o.name, bh.dbarfil, bh.dbablk, bh.tch
from x$bh bh, sys.obj$ o
where tch > 0
and hladdr=‘<p1raw value>’
and o.obj#=bh.obj
order by tch;



Reducing Hotness

■ Reduce Logical IO
■ Reduce Nested Loops
■ Reduce Contention

▪ Unpack blocks
▪ Partition
▪ If index, hash partition global index



Summary

■ Buffer cache starts with empty buffers to be filled with blocks
■ Buffers are not moved around; the headers are updated
■ Buffer headers are linked to a hash chain and unlinked
■ To link/unlink a buffer to/from a chain, a latch is needed
■ This latch is called cache buffer chain latch
■ X$BH and V$BH shows the buffer headers
■ X$BH.HLADDR shows the latch address
■ V$LATCH shows the latch, LATCH# is the identifier
■ V$LATCH_CHILDREN shows the child latches
■ A smaller number of latches protect all the buffers
■ When the latch is not available, the session waits
■ The more popular the buffer the more the CBC Latch wait
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