:
H

Technology

ORACLE DATABASE 12¢

Many in One

Create many databases in one database instance with
the Oracle Database 12c multitenant architecture.

ohn, the lead database architect at Acme

] Bank, has some important visitors today:
the chief information officer and her senior
IT leaders.

Acme has several divisions, all of
which use a third-party application called
MortEngage to manage the mortgage
loan process. Over the past several years,
all of these divisions have deployed and
maintained separate installations of the
product in their independent databases. The
company understands the value of consoli-
dating multiple databases and machines,
and as part of its current consolidation
project, the CIO wants to put all the separate
installations into a single database running
on one powerful machine. All the different
instances of the application would be stored
as schemas in the same database, and that
would eliminate a lot of overhead. There
would be one Oracle Database instance
instead of hundreds, there would be only
one set of Oracle Database metadata, fewer
DBAs would be needed to manage the one
database, and so on. The idea is great, but
unfortunately, as the CIO has learned, the
application needs a specific schema name—
MORTENGAGE—in the database and it is
hard-coded in the application and cannot
be changed. Obviously, as the DBAs correctly
informed her, it is not possible to create two
different schemas with the same namein
a database. Therefore, the only way to run
multiple installations of the application is to
create the required schema in multiple sepa-
rate databases.

Consolidation? Impossible was the
general verdict of Acme's DBAs.

But the smart CIO isn't ready to give up
just yet. She reaches out to John in search
of a solution, and she isn’t disappointed.
Indeed it is possible to consolidate the data-
base—she learns from a smiling John—with
the new multitenant architecture in Oracle

Database 12c. In the rest of this article, you
will see how John provides the solution.

ORACLE MULTITENANT

The problem, John tells the CIO and

the senior IT leaders, has to do with the
namespace. Each Oracle Database user is
uniquely named, so if the application needs
a database user named MORTENGAGE,
only one instance of that application can
run against that database. Each additional
deployment of the same application would
need to connect as the MORTENGAGE user
on a different database.

But that changes in Oracle Database 12c,
John explains. Instead of creating multiple
databases, one can create multiple plug-
gable databases in a multitenant container
database. The database instance—a set of
memory areas, such as the buffer cache and
shared pool and processes such as pmon and
smon—is associated with the multitenant
container database; the individual pluggable
databases do not have their own database
instances. The Oracle Database instance pro-

Before Consolidation

DATABASE CLOUD B ARUP MAMDA

cesses exist only for the multitenant container
database—not the pluggable databases—
saving a lot of resources on the host server.
Toillustrate the concept, John points the
CIO and the IT leaders in his office to Figurel
and shows the various databases; the
memory, CPU, and storage they consume;
and the savings after they have been con-
solidated as pluggable databases in a single
multitenant container database. In Figure],
the red databases are database instances—
three before consolidation and one
multitenant container database after
consolidation. The green databases—after
consolidation—are pluggable databases.
The CIO chews on the information a bit
and muses, "So, John, you are saying there is
justone actual database, and therefore there
is just one set each of memory areas such
as SGA and background processes such as
smon, regardless of the number of pluggable
databases. Well, if there is just one actual
database, how can there be multiple users
with the same name—MORTENGAGE—in
the database?”

After Consolidation

Figure 1: From multiple database instances to pluggable databases in a multitenant container database

ORACLE MAGAZINE SEPTEMBER/OCTOBER 2013

I - |

This is where the beauty of the multi- (£ Dotabase CorBgueation Auilstant - Apgliceton - San 4 of 13 = 1 [|
tenant .archItecture 1{1 Oracle Database 12¢ | T ORACLE' 12‘.
comesin, John explains. To a user, the plug- | 4 OATARASE |
gable databases behave just like regular i Decatess eerrifedios
databases. In fact, a typical user may not L | Guoeiosizbase weme: fogiy
even know the difference. If 50 instances : } Oataase Teeculy | = GonT
of the application need to run, john con- L tousscaudenmcadi)
tinues, the Acme DBAs create 50 pluggable Birsmvsarmes (%) Creuts A4 Caclaier Databass
databases in a single multitenant con- , mm&';m;mm,m&ﬁm?&““m
tainer database. Each pluggable database | | Crsats o Emgty Cotmines Dutatiins |
will have one MORTENGAGE user and will | | +) Crgaia & Caetaiis alabard w1 654 ¢ firs 0B |
support one installation of the application. ? fyrtar 1808y 33 '
The audience, now visibly enthused, urges l £00 Havm el]

] ohn to demonstrate how it all works. Figure 2: Oracle Database Configuration Assistant screen for creating pluggable databases

INSTALLATION
To create the databases, John kicks off the from the query and confirms that two each of the pluggable databases. To create
Oracle Database Configuration Assistant containers—with CON_IDs 3 and 4—were the userin the PLUGI pluggable database,
that came with Oracle Database 12c. After indeed created as expected. By default, he first sets the CONTAINER session param-
a few clicks, he comes to the Database Oracle Database 12c creates a container eter to the pluggable database name and
Identification screen, shown in Figure 2. John called PDB$SEED, which also shows up in then creates the user.
selects Create a Container Database with one the output. This container can’t be used by
or more PDBs as shown and chooses 2 asthe applications, John adds, but it can be used SQL> alter session set container =
number of pluggable databases. He enters to create other containers by cloning. plugi;
CONT as the multitenant container database The pluggable databases do not have
name (in the Global Database Name field) their own background processes and Session altered.
and PLUG as the pluggable database name shared memory areas. They do, however,
prefix (in the PDB Name Prefix field). This take up some space in the multitenant SQL> create user mortengage identified
will create a multitenant container database container database’s Oracle metadata, redo by plugipass;
named CONT and two pluggable databases logfile, cantrolfile, and some tablespaces
named PLUGl and PLUG2. such as undo. Each of the pluggable data- User created.
After the multitenant container database bases has its own SYSTEM, SYSAUX, TEMP,
(CDB) is created, John wants to confirm and USERS tablespaces. There isa common To create the same username in the other
that two pluggable databases were created. location for the Automatic Diagnostic pluggable database, he issues the following
Oracle Database 12cintroduces a newview Repository feature of Oracle Database for commands:
called VSPDBS that shows the pluggable the multitenant container database; the
databases. John logs into SQL*Plus as a pluggable databases do not have inde- SQL> alter session set container =
SYSDBA user and selects two columns from pendent Automatic Diagnostic Repository plugz;
this view: locations. Therefore, John explains, if
there were 50 independent databases as Session altered.
SQL> select con_id, name mentioned earlier, after the consolidation
2 from v$pdbs; into 1 multitenant container database, SQL> create user mortengage identified
the DBAs would need to manage only the by plug2pass;
CON_ID NAME multitenant container database. There is
just linstance and 1 pmon process instead User created.
2 PDBSSEED of 50, reducing the amount of CPU and
PLUG1 memory required. All of this, John points After John issues the commands, he
4 PLUGZ out, dramatically reduces the cost of both confirms that the users exist by checking a
infrastructure and operation. view—new in Oracle Database 12c—called
The pluggable databases are also called Next, John moves on to creating CDB_USERS:
containers, and each container has a unique the users required for the application.
identifier, shown in the CON_ID column The application needs a user named SQL> select con_id, username, common
in the output. John examines the output MORTENGAGE. John creates that user in 2 from cdb_users;

.

SEPTEMBER/OCTOBER 2013 ORACLE.COM/ORACLEMAGAZINE

SQL> connect mortengage/plug2@plug2
SQL> show parameter optimizer_use_sql_
plan_baselines

TYPE

NAME VALUE

optimizer_use_sql... boolean FALSE
The value of the parameter is FALSE, as
expected. Then, connecting to PLUG], John

confirms that the value is TRUE.

SQL> connect mortengage/plugs@plugl
SQL> show parameter optimizer_use_sql__

plan_baselines
NAME TYPE VALUE
optimizer_use_sql... boolean TRUE

ADMINISTRATION
Although the CIO is growing in confidence
about the multitenant architecture, Jill, the
DBA manager, appears skeptical. "Well,"
she questions, "if this is actually a single
database, how do the DBAs manage the
pluggable databases independently? For
example, how does a DBA shut down one
pluggable database but not the other?”
Thatis a genuine concern, John agrees, but
he assures her that the pluggable databases
can still be managed separately. To demon-
strate, John first logs into the PLUGI pluggable
database as SYSDBA and shuts it down:

SQL> conn sys/oracle@plugl as sysdba
Connected.

SQL> shutdown immediate

Pluggable database closed.

Afterit is shut down, John checks the
status of the pluggable databases:

SQL> conn / as sysdba

Connected.

SQL> select con_id, name, open_mode
2 from vSpdbs;

CONLID NAME OPEN_MODE
2 PDBSSEED READ ONLY
3 PLUGL MOUNTED
4 PLUG2 READ WRITE

Code Listing 2: Alert log

. 52 DATABASE CLOUD

l"IlllllIIIIIIIlIIIIIIIIIIIIIllIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

2012-12-21 16:24:31.874000 -05:00

ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE

ALTER SYSTEM: Flushing buffer cache inst=0 container=3 local

2012-12-21 16:24:32.923000 -05:00
Pluggable Database PLUG1 closed

Completed: ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE

2012-12-21 16:24:38.095000 -05:00

ALTER PLUGGABLE DATABASE OPEN READ WRITE

2012-12-21 16:24:45.659000 -05:00

Opening PDB 3 with no Resource Manager plan active
Pluggable Database PLUG1 opened read write
Completed: ALTER PLUGGABLE DATABASE OPEN READ WRITE

... output truncated ...

The PLUGI pluggable database is now
shown as MOUNTED, John confirms. The
other pluggable databases have not been
affected.

Similarly, to start the pluggable database,
John issues the following commands:

SQL> conn sys/oracle@plugl as sysdba
Connected.

SQL> startup

Pluggable Database opened.

Because the database instance belongs
to the multitenant container database and
is shared between pluggable databases,
the instance itself is not shut down when
John shuts the pluggable database down.
And given that the alert log is for a database
instance, it is for the multitenant container
database, and John displays the last part of
it, as shown in Listing 2. From the lines in
the output, John confirms that the PLUGI
pluggable database was closed and later
reopened in read/write mode.

Jill stillisnt convinced that this consolida-
tion would be a cakewalk for her team. "We
have a ton of scripts that use views with the
prefix DBA _, such as DBA_USERS, to geta
listing of all users,” she explains. "Do we have
to change all those scripts to use the CDB _
prefixed views? That's a lot of changes.”

Not at all, assures John. The CDB _
prefixed views, newly introduced in Oracle
Database 12¢, show the data across all the
pluggable databases inside a container data-
base. However, when the DBA is connected
to a single pluggable database, the DBA _
prefixed views show the metadata of that
specific pluggable database only. None of the

scripts referencing the DBA _ prefixed views
needs to be changed.

In addition, Oracle Enterprise Manager
12cis also aware of the multitenant archi-
tecture, and the Acme DBAs can use the
tool to manage the multitenant container
database and the pluggable databases. Jill
couldn’t be happier.

CLONING
The beauty of the Oracle Database 12¢
multitenant architecture doesn’t stop at
just being able to run multiple pluggable
databases within a multitenant container
database, John adds. It is also possible to
create another pluggable database as a
copy of an existing one quickly—or clone
the pluggable database. John demonstrates
the procedure of cloning the PLUG2 plug-
gable database as a new pluggable data-
base named PLUG3:
1. Connect to the multitenant container
database as a SYSDBA user.

SQL> conn / as sysdba
2. Close the PLUG2 pluggable database.

SQL> alter pluggable database plug2
close;

3. Open the PLUG2 pluggable database
in read-only mode, because that is the
status it should be in when it is cloned.

SQL> alter pluggable database plug2
open read only;

4. Create the PLUG3 pluggable database as

SEPTEMBER/OCTOBER 2013 ORACLE.COM/ORACLEMAGAZINE

I 0 (-

Code Listing T: TNS entries for pluggable databases

—

CONLID USERNAME COMMON
3 MORTENGAGE NO
4 MORTENGAGE NO
1 SYSTEM YES
2 SYSTEM YES
3 SYSTEM YES
4 SYSTEM YES

John draws everyone's attention to
this output. There are two users named
MORTENGAGE, but they are in two different
pluggable databases—containers—distin-
guished by CON _IDs 3 and 4. Because they
are distinct in their respective pluggable
databases, they are not visible across all
the piuggable databases. They are called
local or noncommon users, indicated by
the NO value in the COMMON column in
the output. In contrast, John points out, the
SYSTEM user is visible in all the containers.
However, unlike the MORTENGAGE user,
the SYSTEM user is the same userin all
the pluggable databases in a multitenant
container database. SYSTEM is known as
a common user, and the SYSTEM user's
COMMON column value is YES.

CONNECTION

"I see that thereis a MORTENGAGE userin
each of the pluggable databases," offers one
DBA, "but how does an application connect
to a specific pluggable database?”

“Exactly as it used to connect in the past,”
replies John. "By using the appropriate TNS
connect string.” He puts the entries in the
TNSNAMES.ORA file, located in the network\
admin directory under Oracle Home on the
client machines where the applications run;
Listing 1 shows the TNSNAMES.ORA entries.

The service names in each connect
string specify the pluggable database to
connect to. Each pluggable database, John
explains, has a unique service name that is
the same as the pluggable database name.
So the PLUGI pluggable database has the
default service name PLUG], which cannot
be defined in any other pluggable database
in a multitenant container database. The
applications connect to the database as they
always did. For a simple demo, John con-
nects to the PLUGI pluggable database by
using SQL*Plus:

PLUGL =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS =
)
(CONNECT_DATA =
(SERVICE_NAME = PLUGL1)
)
)

PLUG2 =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS =
)
(CONNECT_DATA =
(SERVICE_NAME = PLUG2)
)
)

sqlplus mortenagage/pluglpass@plugl

The application running against the
PLUG2 pluggablie database uses the plug2
connect string, so nothing changes from the
perspective of the applications or the typical
users. Instead of connecting to separate
independent databases, applications and
application users now connect to multiple
pluggable databases—containers—in a
single multitenant container database. To
the applications, the containers are indepen-
dent databases. This is music to the ears of
the CIO.

To identify which pluggable database a
user is connected to, John demonstrates a
new user environment variable called CON _
NAME in the SYS_CONTEXT function:

SQL> select sys_context('userenv',
‘con_name')

2 from dual;

SYS_CONTEXT('USERENV" , * CON_NAME ')

PLUG1

At this point, May, the lead developer
responsible for application deployment and
maintenance, expresses a concern. Different
installations of the MortEngage applica-
tion require different settings in the data-
base to improve performance, she informs
everyone. For example, in one database, the
OPTIMIZER _USE_SQL_PLAN_BASELINES

(PROTOCOL = TCP)(HOST = prohostl)(PORT = 1521))

(PROTOCOL = TCP) (HOST = prohost1)(PORT = 1521))

database parameter is set to TRUE to take
advantage of the baselines, whereas in other
databases, the parameter is set to FALSE.
Now that the muititenant container data-
base is the same for all these pluggable data-
bases, her concern is that all the pluggable
databases will have the same value for the
parameter and that therefore some applica-
tion installations may have serious issues.

It's a valid concern, John concedes, but he
announces that fortunately it is possible to
set different values for different pluggable
databases. He demonstrates this by setting
the value of the parameter in the PLUG2
pluggable database to FALSE.

$ sqlplus sys/oracle@plug2 as sysdba

SQL> alter system set optimizer_use_sql_

plan_baselines = false scope=memory;

Then he sets the value of the same
parameter to TRUE in the PLUG1 pluggable
database.

$ sqlplus sys/oracle@plugl as sysdba

SQL> alter system set optimizer_use_sql_

plan_baselines = true scope=memory;

John then logs in to the different plug-
gable databases as the MORTENGAGE user
and checks for the value of the parameter.
First, connecting to PLUG2, he checks for
the value:

ORACLE MAGAZINE SEPTEMBER/OCTOBER 2013

a new metadata file with information from
the pluggable database. This metadata
fileis in XML format, and John names it
pluginfo_plugd.xml. This file is created

in the Oracle Home, under the database
directory {in Windows) or dbs (in UNIX).

SQL> alter pluggable database plugh
2 unplug into ‘pluginfo_plugk.xml";

Pluggable database altered.

The Oracle-hosted online version of
this article at bit.ly/158fW4g includes the
remaining steps required to clone the plug-
gable database as well as questions and
answers on backups in the multitenant con-
tainer database architecture.

CONCLUSION
Pluggable databases running in the multi-
tenant architecture of Oracle Database 12¢

offer the simplicity and familiarity of tradi-
tional databases while providing the flex-
ibility to run multiple pluggable databases
within one multitenant container database.
The muititenant architecture enables

many schemas with the same name to be
created without the need to create many
disparate databases. Because there is just
one multitenant container database, there
is just one database instance, eliminating
the Oracle Database background process
and memory areas such as SGA for separate
databases. And running pluggable data-
bases in the muititenant architecture of
Oracle Database 12c requires no changes to
applications.

Acme’sIT leaders are all nods and
smiles, and there are no more questions
about Oracle Database 12¢, multitenant
container architecture, pluggable data-
bases, provisioning, cloning, or backups.
The meeting is adjourned. <

. 54 DATABASE CLOUD

Arup Nanda (arup@
proligence.com) has
been an Oracle DBA

. since 1993, handling

all aspects of database
administration, from
performance tuning to security and disaster
recovery. He was Oracle Magazine's DBA of the
Year in 2003 and received an Oracle Excellence
Award for Technologist of the Year in 2012.

NEXT STEPS
]

READ online-only article content
bit.ly/158fW4g

LEARN more about
Oracle Database 12¢
oracle.com/database

Oracle Multitenant concepts
Oracle Database Concepts 12c Release 1 (12.1)
bit.ly/13S7C2v

DOWNLOAD Oracle Database 12¢
bit.ly/epBiUG

4
N - [
TErNaTION

Polar Bears Intemational
is a trusted voice focused
on funding scientific research
for the survival of this
magnificent animal.
Polar Bears Intemational
also funds educational
programs that are inspiring
people to reduce their
carbon emissions.

-

Conservation through Research and Education

" www.polarbearsinternational.org

SEPTEMBER/OCTOBER 2013 ORACLE.COM/ORACLEMAGAZINE

a copy of PLUG2. Because cloning creates
new datafiles, John needs to indicate that
the new datafile names should include
“PLUG3” wherever "PLUG2" appears. The
FILE_NAME_CONVERT clause takes care
of that:

SQL> create pluggable database
plug3 from plug2 file_name_convert =
('PLUG2', 'PLUG3');

The command succeeds, with the
message "Pluggable database created.”

5. Open the newly created pluggable

database.

SQL> alter pluggable database plug3

open;

Now the PLUG3 pluggable database is
ready for business.

6. Asafinal step, John closes the PLUG2

pluggable database (which is nowin

read-only mode) and reopens itin

read/write mode.

Jill, the DBA manager, sees a lot of
potential for this feature. The DBAs are often
asked by the application team to clone QA
and test databases for their testing and to
drop them after the testing is completed.
This activity not only demands a consider-
able effort from the DBAs but it also requires
significant CPU and memory on the server
to run the new database instances. With
the multitenant architecture and cloning,
John continues, Jill can immediately spin
up another database for testing without
consuming any additional CPU or memory.
When the testing is completed, she can drop
the newly created pluggable database by
issuing the following SQL:

drop pluggable database plug3 including
datafiles;

Jill also occasionally has to clone data-
bases from another server. She asks whether
the Oracle Database 12c multitenant archi-
tecture supports that. The cloning doesn‘t
have to be within the same database, John
answers. It is possible to clone a pluggable
database from another multitenant con-
tainer database as well, or "plug” a plug-
gable database from a remote multitenant
container database into this multitenant
container database. John demonstrates the
technique with the following steps:

1. Close the pluggable database to be
cloned in the source multitenant con-
tainer database.

SQL> alter pluggable database plugs

close;
Pluggable database altered.

2. "Unplug"” the pluggable database: Create

ORACLE.

&

PUBLIC
CLOUD.
PRIVATE
CLOUD.

 ORACLE

Go to where the

Join Us.

O] 0]

OracleMagazine

ORACLE

CZYEPIrT

Oracle Magazine

conversation lives.

Connect with Oracle Magazine on your favorite social
channel and be a part of our growing community.

i

@OracleMagazine

Print. Digital. Mobile

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of

their respective owners.

ORACLE MAGAZINE SEPTEMBER/OCTOBER 2013

