
(c) 2009 Arup Nanda 1

Plan Stability, Baselines, and SQL Plan
Management

Arup Nanda

(c) 2009 Arup Nanda 2

About Me
• Oracle DBA for 16

years and counting
• Speak at conferences,

write articles, 4 books,
provides trainings

• Brought up the Global
Database Group at
Starwood Hotels, in
White Plains, NY

(c) 2009 Arup Nanda 3

What you will learn
• What is SQL Plan Management
• What is a Baseline
• Using baselines to stabilize the plan
• How to enable/disable usage of baselines

(c) 2009 Arup Nanda 4

Meet John the DBA
• John is a DBA at Acme Corp
• Honest, hardworking, highly experienced
• But not politically savvy; doesn’t beat around the

bush. straight shooter
• Let’s see some scenarios he faced in the job

(c) 2009 Arup Nanda 5

Third Party Tool
• Acme bought a third party gee-whiz tool
• The performance was terrible
• John was asked to explain why!
• He analyzed and determined the cause: bad

optimizer plans
• He suggested putting hints to fix the plans
• But no, he can’t. The source code is not

accessible, remember?
• Status: still unresolved and John is to blame!

(c) 2009 Arup Nanda 6

Analyzer Gone Wild
• John collects optimizer stats every day
• One day performance went south, apps timed

out
• On analysis he found that the plan of those

queries had changed
• The plan changed b’coz of the new stats
• John got blamed for the fiasco

(c) 2009 Arup Nanda 7

Stale Stats
• John heard somewhere that stats should not be

collected everyday
• He decided to stop collecting stats

– did so only occasionally
• One day performance went south
• Cause: Optimizer Plan was bad
• Reason: stale stats
• He was blamed!

(c) 2009 Arup Nanda 8

Database Upgrade
• John wanted to upgrade a DB from 10g to 11g
• He was asked “can you guarantee that plans will

not change”
• “Of course not”, he responded. “But most likely

they will not”
• Upgrade completed
• Most plans were OK; some went south.
• John was blamed for that

(c) 2009 Arup Nanda 9

Plan Changes
• A developer complains about performance
• John checks the plan and finds a bad plan

– a full table scan, which should have been index scan
or may be vice versa

• He asks the developer “is the data different”?
• “No”, comes the reply. “has been the same for 4

years”.
• John has no history of the plan
• Oracle is misbehaving – was the “root cause”
• Who do you think was blamed?

(c) 2009 Arup Nanda 10

Optimizer Misbehaves
• Oracle Cost Based Optimizer sometimes does

not produce most optimal plan
• Difficult to debug
• Well, John takes the blame for that as well!

(c) 2009 Arup Nanda 11

Stored Outlines
• For inefficient plans, John does have a solution
• Outlines make a plan for a query fixed

– The optimizer will pick up the fixed plan every
time

• Problem:
– Based on the bind variable value, data

distribution, etc. specific plan may change
– A fixed plan may actually be worse

(c) 2009 Arup Nanda 12

The Problem
• If optimizer calculates execution plans, it may

produce inefficient ones
• If you use stored outlines, a fixed plan may be

as inefficient as to be noticeable
• Can you have the best of both words?

– Have plan fixed by outlines
– But calculate the new plan anyway for

comparison and use if appropriate
• Baselines do exactly that … and more

(c) 2009 Arup Nanda 13

Quick Primer on Parsing
• When a query is submitted, Oracle performs the

following:
– Determines if there is a parsed statement
– Parses query

• Determines the objects being accessed
• e.g. is EMP a table or a synonym
• Determines if the user has privs on that object
• Calculates the optimal execution plan

– Binds the values to the variables
– Stores the parsed statement in library cache

(c) 2009 Arup Nanda 14

Statement Versions

SELECT * FROM EMP
WHERE SAL>1000

SCOTT

EMP table in
SCOTT schema

ARUP

SELECT * FROM EMP
WHERE SAL>1000

EMP table in
ARUP schema

No index on
SAL column

Will
Generate a

Full table scan

Index on
SAL column

Will probably
generate an
index scan

Demo:
cur_test.sql

(c) 2009 Arup Nanda 15

SELECT * FROM EMP
WHERE SAL>1000

SQL Statement

SQL_ID = a1b2c3d4

SELECT
ACCESS

TABLE
INDEX

SELECT
ACCESS

TABLE
INDEX

optimizer_goal = first_rows
db_file_multiblock_read_count

optimizer_goal = first_rows
db_file_multiblock_read_count

Plan 1

PLAN_HASH_VALUE = 1a2b3c

Plan 2

PLAN_HASH_VALUE = 2a3b4cA single SQL statement may
have multiple plans
associated with it

(c) 2009 Arup Nanda 16

SQL Statement S1

Plan P1

Plan P2

Plan P3

Baseline

A baseline is a
collection of
plans for a
specific SQL
statement

(c) 2009 Arup Nanda 17

SQL Statement S1

Plan P1

Plan P2

Plan P3

Baseline

Plan P4

A new plan was
generated as a
result of some

change, e.g. the
optimizer

parameters were
changed. This

plan is added to
the baseline

(c) 2009 Arup Nanda 18

SQL Statement S1

Plan P1

Plan P2

Plan P3

Baseline

Plan P4

When a SQL is
reparsed, the
optimizer compares
the plan to the list of
plans in the baseline,
but not the newly
generated plan as it
is not “accepted”.

(c) 2009 Arup Nanda 19

SQL Statement S1

Plan P1

Plan P2

Plan P3

Baseline

Plan P3

A plan is no
longer valid, e.g.
it had an index
scan; but the

index was later
dropped. It is

marked as such.

(c) 2009 Arup Nanda 20

New Plan is Worse
• Baselines contain the

history of plans for an
SQL statement

• If there was a good
plan ever, it will be
there in the baseline

• So the optimizer can
choose the plan with
the lowest cost

Plan P1

Plan P2

Plan P3

Baseline

Plan P4

Cost = 10

Cost = 12

Cost = 9

New plan.
Cost = 15

Optimizer will
choose P3 even
though the new
plan generated

was P4

(c) 2009 Arup Nanda 21

New Plan is the Best
• Even if the new plan is

the best, it will be not
be immediately used

• The DBA can later
made the plan fit for
consideration by
“evolving” it!

Plan P1

Plan P2

Plan P3

Baseline

Plan P4

Cost = 10

Cost = 12

Cost = 9

New plan.
Cost = 6

Optimizer will
choose P3 since it

is the best in the list
of “accepted” plans

(c) 2009 Arup Nanda 22

SQL Statement

New Plan Generated

any other
accepted plans in

baseline?

Add this plan to the SMB

Baseline this plan but set to not
Accepted

Choose the best accepted plan

Use this best plan, not the new
plan

yes no

(c) 2009 Arup Nanda 23

SQL Management Base
• A repository where the following are stored

– Statements
– Plan histories
– Baselines
– SQL profiles

• Stored in SYSAUX tablespace

(c) 2009 Arup Nanda 24

Configuring SMB
To Check

select parameter_name, parameter_value
from dba_sql_management_config;
PARAMETER_NAME PAMETER_VALUE
----------------------- -------------
SPACE_BUDGET_PERCENT 10
PLAN_RETENTION_WEEKS 53

To Change:
BEGIN
DBMS_SPM.CONFIGURE(
'PLAN_RETENTION_WEEKS',100);

END;

(c) 2009 Arup Nanda 25

DBA_SQL_PLAN_BASELINES

Cost when the baseline was createdOPTIMIZER_COST
AUTOPURGE

YES – EnabledFIXED

NO - DisabledACCEPTED
ENABLED

Unique plan identifier, in text, e.g.
SYS_SQL_PLAN_e603446911df68d0

PLAN_NAME
SQL_TEXT

Unique ID in text form, e.g.
SYS_SQL_97a087e8e6034469

SQL_HANDLE

Unique identifier for the SQL, a number, e.g.
10925882130361959529

SIGNATURE

(c) 2009 Arup Nanda 26

More about baselines
• Plans in baselines stay even after the SQL is

flushed from the shared pool

(c) 2009 Arup Nanda 27

To Check Baselines
• Enterprise Manager
• Click on Server Tab
• Click on Plan Management
• Enter a Search String for the SQL and click Go

(c) 2009 Arup Nanda 28

Baselines Demo
• Setup: spm_test1
• Table:

SQL> select status, temporary, count(1)
2 from accounts
3 group by status, temporary;

STATUS T COUNT(1)
------- - ----------
VALID N 68416
INVALID N 1
VALID Y 138

• Query:
select /* SPM_TEST */ * from accounts where status =

'INVALID' and temporary = 'Y'

(c) 2009 Arup Nanda 29

To check for Plans in the baseline
select SQL_HANDLE, PLAN_NAME
from dba_sql_plan_baselines
where SQL_TEXT like '%SPM_TEST%'
/

SQL_HANDLE PLAN_NAME
------------------------------ -----------------------------
SYS_SQL_4602aed1563f4540 SYS_SQL_PLAN_563f454011df68d0
SYS_SQL_4602aed1563f4540 SYS_SQL_PLAN_563f454054bc8843

SQL Handle is the same since
it’s the same SQL; but there are

two plans

(c) 2009 Arup Nanda 30

Checking Plans Being Used
Execution Plan
--
Plan hash value: 2329019749

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		17139	1690K	588 (1)	00:00:08
* 1	TABLE ACCESS BY INDEX ROWID	ACCOUNTS	17139	1690K	588 (1)	00:00:08
* 2	INDEX RANGE SCAN	IN_ACCOUNTS_01	34278		82 (0)	00:00:01
--

Predicate Information (identified by operation id):

1 - filter("TEMPORARY"='Y')
2 - access("STATUS"='INVALID')

Note

- SQL plan baseline "SYS_SQL_PLAN_51f8575d04eca402" used for this statement

This shows that a SQL
Plan Baseline is being

used.

(c) 2009 Arup Nanda 31

To See Plan Steps in Baseline
• Package DBMS_XPLAN has a new

function called display_sql_plan_baseline:
select * from table (

dbms_xplan.display_sql_plan_baseline (

sql_handle=>'SYS_SQL_4602aed1563f4540',

format=>'basic note')

)

(c) 2009 Arup Nanda 32

Demo: Adding Baselined Plans
• Demo: spm_test2
alter session set
optimizer_capture_sql_plan_baselines = true

/
… execute the query at least 2 times
alter session set
optimizer_capture_sql_plan_baselines =
false

/
• A plan is baselined when a SQL is executed

more than once

(c) 2009 Arup Nanda 33

Adding more plans
• Demo: spm_test3
• Change the optimizer parameter so that a new

plan is generated
alter session set
optimizer_mode=first_rows

• Capture the plans for the baseline
• The new plan is stored in baseline but not

“accepted”; so it will not be used by the optimizer

(c) 2009 Arup Nanda 34

Evolve a Plan
• Make a plan as acceptable (only if it is better)
variable rep CLOB
begin
:rep :=
dbms_spm.evolve_sql_plan_baseline (
sql_handle => 'SYS_SQL_5a8b6da051f8575d'
, verify => ‘YES'
);

end;
/
• Variable REP shows the analysis.
• Demo: spm_test4.sql

(c) 2009 Arup Nanda 35

Check the use of new plan
• Demo: spm_test5

alter session set
optimizer_use_sql_plan_baselines = false

– Check plan
alter session set
optimizer_use_sql_plan_baselines = true

– Check plan

(c) 2009 Arup Nanda 36

Fixing a Plan
• A plan can be fixed by:

dbms_spm.alter_sql_plan_baseline (

sql_handle => ‘SYS_SQL_5a8b6da051f8575d',

plan_name => 'SYS_SQL_PLAN_51f8575d04eca402',

attribute_name => 'fixed',

attribute_value => 'YES'

)

• Once fixed, the plan will be given priority
• More than one plan can be fixed
• In that case optimizer chooses the best from them
• To “unfix”, use attribute_value => ‘NO'

spm_test6.sql

(c) 2009 Arup Nanda 37

Capturing Baselines in Bulk
• Setting system parameter

alter system set
optimizer_capture_sql_plan_baselin
es = true

• Capture from Cursor Cache
• Capture form SQL Tuning Set (STS)
• Convert from Stored Outlines (11gR2)

(c) 2009 Arup Nanda 38

Capturing from Cursor Cache
declare

cnt number;

begin
cnt := dbms_spm.load_plans_from_cursor_cache

(sql_id => '003vmga5rcrs4');
cnt := dbms_spm.load_plans_from_cursor_cache

(sql_id => '005nuc1nd7u93');
cnt := dbms_spm.load_plans_from_cursor_cache

(sql_id => '009su850aqyha');

end;

(c) 2009 Arup Nanda 39

Capturing from Cursor Cache
declare
cnt number;

begin
cnt :=
dbms_spm.load_plans_from_cursor_cache(

attribute_name => 'sql_text',
attribute_value => '%SPM_TEST%'

);
end;

(c) 2009 Arup Nanda 40

Capturing from STS
declare

cnt number;

begin

cnt := dbms_spm.load_plans_from_sqlset(

sqlset_owner => 'SYS',

sqlset_name => 'TEST_STS',

basic_filter => '%SPM_TEST%'

);

end;

(c) 2009 Arup Nanda 41

Create STS
declare

l_task_name varchar2(2000);

begin

l_task_name :=

dbms_sqltune.create_tuning_task (

sql_id => '7zpphmzu2m1j6'

);

end;

/

(c) 2009 Arup Nanda 42

How else can you tune a query
You can also use SQL Tuning Advisor
1. Create a tuning task

variable l_task varchar2(2000)

exec :l_task :=
dbms_sqltune.create_tuning_task(

sql_id => 'cbynbmssqudbx');

2. Execute the task
exec dbms_sqltune.execute_tuning_task(

task_name => :l_task)

(c) 2009 Arup Nanda 43

3. Check for recommendations
select dbms_sqltune.report_tuning_task(

:l_task, 'TEXT', 'BASIC') FROM dual;

4. If there is a SQL Profile, accept it
exec dbms_sqltune.accept_sql_profile(

task_name => :l_task);

This will add the tuned plan as per SQL Profile
to the baseline as well.

• So you can use either Evolve or STA for
creating baselined plans

(c) 2009 Arup Nanda 44

Use of Baselines
• Fixing Plan for Third Party Applications
• Database Upgrades

– Both within 11g and 10g->11g
– Capture SQLs into STS then move the STS to

11g
• Database Changes

– Parameters, Tablespace layout, etc.
– Fix first; then gradually unfix them

(c) 2009 Arup Nanda 45

Use of SMB
• SQL Management Base is a historical repository

of SQLs and associated plans
• The plan exists even though SQL is flushed out

of memory

(c) 2009 Arup Nanda 46

Let’s Revisit John’s Issues

Query the SQL Management
Base

Developers not aware of
plan changes

Get all the plans in STS and
accept all of them

Upgrade breaking good
plans

Stats collection causing bad
plans

Won’t happen since the bad
plans will not be in baseline
But he can check them later
and evolve them if good

Optimizer misbehaving

Change opt. env.; generate
new baselines and fix them

Bad plans in 3rd-party apps

SolutionIssue

(c) 2009 Arup Nanda 47

