Arup Nanda

LOW-RISK 11G UPGRADE
USING RAT, SNAPSHOT
STANDBY AND PLAN
BASELINES

About Me

Oracle DBA for 16
years and counting

Speak at conferences,
write articles, 4 books

Brought up the Global
Database Group at

Starwood Hotels, in
White Plains, NY

ORACLE

|.. TECHNOLOGY NETWORK

RMAN Recipes

e Oracle Database 11g

A Pralslest-Salutian Aper tach

Oracle Datlshase 11g
New Features

What You will Learn

A rehash of our 11g Upgrade Experience

What challenges lay during our upgrade

What tools are available with Oracle

How we used these tools to meet these challenges

The information is for educational purpose only; not
professional advise or consultation. Starwood
and the speaker make no warranty about the

accuracy of the content and assume no responsibility

for the consequence of the actions shown in the
slides.

Must Read

MetaLink Note 429825.1 shows the steps for a
manual upgrade

MetaLink Note 601807.1 Upgrade Companion for
11gR1: a one stop paper for upgrade.
Note 837570.1 for 11gR2

A very important step [Never skip it] — check for

dangling dictionary objects — MetalLink 579523.1

Database Detaills

A lot of applications; not just one
A lot of business processes; not just a few

Very critical business functionalities

A high $ amount attributed to downtime or slowness
(which also translates to downtime since the apps time
out)

Version 10.2.0.4 was pre-upgrade

Pre/Post-Upgrade

Pre-Upgrade

Post-Upgrade

10.2.0.4

11.1.0.7

No Flash Recovery Area

Flash Recovery Area

Flashback not Enabled

Flashback Enabled

Non-OMF

Oracle Managed Files

Older hardware

Newer hardware

No partitioning

Partitioning

No Compression

Compression

Some parameters

Changed params

Linux RHAS 4

Linux RHAS 5

The $zillion Question

If it ain’t broken don’t fix it — is generally the mantra
Must Have Answers

What will happen — will the database at least perform as
much as right now, or it might be worse?

How do we know?

How certain are we?

Why Worse?

Optimizer Plans could be change for better (or,
worse) — performance related

Functionality may have changed, producing
unexpected results

New bugs may be encountered for which there will
be no patches, at least not immediately

Some new functionality may require further
attention

The Usual Plan

Create new environment (pre-prod) and run the
production-like events there and examine the
performance

The key is it is “production-like”; not actual events
that occurred in production.

Usually synthetic, concocted

So, what's Problem?

Synthetic transactions are not faithful
reproductions of the events that actually happened

They are mechanized and repeatable, but do not
capture production dynamics

Concocted ones do not take into account unique
data values.

Example: name searches are more on “Johnson” in New
York while in Los Angeles, it's “Lee”

The Ugly Truth

Will the database work the same way (if not better)
after the upgrade?

Synthetic transactions will not give you the answer

To get that, you must ask the users to redo the
activities exactly how they did in real production
In the same order, using the same breaks in between!

Challenges

Building a test system
quickly, easily, accurately, repeatedly

Dry runs of Upgrades
Ensuring performance

Repeating the activities of the production
o accurately

o without impacting production
Impact of new parameters

Additional Challenges

You want to change something else during the
upgrade (since you have an outage)

Convert to RAC

Storage to ASM

Change buffer pools

Change some parameter, such as cursor_sharing

Take advantage of new features, e.g. LOBs to Securefiles

Tools at your Disposal

Database Replay

SQL Performance Analyzer
SQL Tuning Advisor

SQL Plan Management
Easier Standby Building

Snapshot Standby
Switching between Physical and Logical

Concocting Prod Work

Workload generator tools such as Load Runner
can simulate user actions,

Capture clickstream on a webpage

Databank parameters to simulate load

Coverage for important workflows only

Upgrade involves only one changed part

Application -> App Server -> Database
So, there is no need to test the entire stack

Cost of QA is not insignificant
Availability of QA is not automatic

Parts of a System

v

These are the
only parts that
are changing

Workload Generation Tools

™

They may work
here; but in that
case, it becomes a
pure SQL “runner”

Synthetic
Workload
Generation Tools

? 2
Usually Work Here What are the SQLs? When to run? How

to sequence?

Questions for “SQL Running’”

What SQLs were executed

How often was each one executed
Determines parsing, buffer cache hits, etc.

In what order were they executed
Determines buffer hits

How much was the time between them
Determines buffer hits, parsing

What optimizer environment was in effect

Someone sets DBFMBRC before running an SQL and
then resets it to default

Are sequence numbers guaranteed?

Capturing the Work

SQL Trace
Captures the SQL statements, in order, with plans
10046 Trace

Captures the SQL statements with timestamp
Bind variables

10053 Trace

Captures the optimizer environment

But, how will you put the information from all this
together to produce something that is:
Executable

Repeatable

Database Replay

This is where Database Replay really shines

It captures the actual transactions from the
production system, in the same order, with the
same breaks in between

It's as if the users are redoing the same activities
In front of the test system

Even sequence numbers are fetched the same
way they occurred in production

No primary key violation

Workload Capture

The package dbms_workload capture captures
workload from current production

The package exists in 11g, so what about 10g?
In 10.2.0.4 it exists

For earlier versions, a patch needs to be applied

Refer to MetaLink Note 560977.1 for details

The easiest is to use Enterprise Manager Grid
Control

Grid Control 10.2.0.5 has the toolkit

Steps

Capture Workload

It produces a set of files with extension *.rec
Move them to the 11g system

Use Replay feature in command line or EM to
replay the activities

Both these activities take AWR snapshots before

and after events.

Use AWR Compare Period Report to compare the
performance.

A complete detailed article on Database Replay is
on OTN:

Capture from 10g

Create a directory to hold the rec files
create directory RAT as ¢/oracle/rat’

Add a Filter
BEGIN

dbms _workload capture.add filter(
fname => 'abcd filter’,

fattribute => 'USER',
fvalue => 'ABCD');
END;
Allows you to capture only those for the user called ABCD.

Start the Capture Process
BEGIN
DBMS_WORKLOAD CAPTURE.START CAPTURE (
name => ‘capturel’,
dir => 'RAT',
duration => 3600,

default action => 'EXCLUDE",

auto unrestrict => TRUE);
END;
It will generate a lot of files in the format wer_*.rec
In the /oracle/rat directory.

Get the capture ID
select ID from dba workload captures
where status = ‘COMPLETED’

Export the AWR
begin
dbms workload capture.export awr

(capture id => <captureid>);
end;
/

AWR will also be exported as a dumpfile in the
/oracle/rat directory.

Copy all the files in that directory to the target
system

Replay Steps

Task Task Name Description

1 Capture Workload Choose this option to capture workload on this

database.

2 Preprocess Preprocessing will prepare a captured workload for
Captured replay. This must be done once for every captured
Workload workload.

3 Replay Workload Choose this option to replay a preprocessed

workload on this database.

Create djréctory on the target
Pre-process the captured workload
Replay the workload

From the command line
$ wrc system/manager replaydir=/u0i/oracle/rat

During Replay

Capture
Duration (hh:mm:ss) 00:05:00

Database Time (hh:mm:ss) 00:00:47
Average Active Sessions 0.1a
User Calls 1,193

iew Workload Replay: REPLAY-D111D1-20/

Status In Progress | Stop Replay |

¥ Summary
Replay Name REPLAY-D111D1-20090909171302
Directory Object pat/o)
Database Mame D111D1
DEID 2625984356
Replay Error Code HNfA
Feplay Error Message HNone

Replay Percentage of Capture
00:04:56 I oc.67

00:00:20 I 42.55
0.07 I 43.13
1,165 I, /.05

Gives you an idea
about how much is
left

| Workload Profile l Connection Mappings Replay Parameters

Metwork Time (hh:mm:ss) 00:00:00 Clients 1
Think Time (hh:mm:ss) 00:03:16 Clients Finished 0

Elapsed Time Comparison

Capture
O Replay Elapsed
B Capture Elapsed
Feplay B Mot et Replayed

oo 0% 1o 15 20 2% 320 325 40 45 L0 55
Elapsed Time (Minutes)

Get the Reports

This “compare”
report, aka “Diff-
diff Report” is the
most important. It

shows the
system stats on
the target and the
source when the
same activities
were occurred
there.

Workload Replay Report
| Eun Eeport)

AWR Compare Period Report
First Workload Capture or Replay |capturel (Sep 9, 2009 12:46:06 FM) j

Second Workload Capture or Replay IREF‘LA‘F-DIiiDi-iDDQDQDQi_i?Di (Sep @, 2009 5:15:05 PM)

| Eun Eeport |

AWR Report
Waorkload Capture or Replay |REPLAY-D111D1-20090909171302 (Sep 9, 2009 5:15:05 F‘M]j

| Eun Eeport)

ASH Report
Waorkload Capture or Replay |REF‘LAY-DlllDl-EDDQDQEIQl?lBEIE (Sep 9, 2009 5:15:05 F‘M]j

End Date [Sep 9, 2008
(example: Sep 9, 2009)

End Time IE 'IIED 'I 7 AM = PM

Start Date [Sep 9, 2009
(example: Sep 9, 2009)

Start Time IE '"15 'I 7 AM = PM
Filter |SID =l

| Run Eeport

SQL Performance Analyzer

Some SQLs showed regression, i.e. they
underperformed compared to 10g

You need to know why
optimizer environment, bind variables, etc?

SPA allows you to run captured SQLs in differing
environments

In the same database but

o Different optimizer parameters

o Different ways of collecting stats,

o With pending stats in 11g, can validate on PROD during
maintenance windows/non-peak

o Different indexes, or MVs

Source of SQLs

Shared Pool
Captured from Production during a workload
Stored in a SQL Tuning Set (STS)

Continuous Capture functionality to capture all
SQLs

STS STS

_/XF’O/\
And Target b Raplay

Import

Capture from 10g

The following captures the SQL Statements into a
SQL Tuning Set (STS) in 10g.

BEGIN dbms sqgltune.capture cursor cache sglset(
sqlset name =>"10GSTS ',
time limit => '3600",
repeat interval=>'300",

sqlset owner =>'SYS');

END;
This incrementally captures the SQL statements
every 5 mins for 10 hours.

You can export this STS and import into 11g.

SPA Tasks

Description
Create SQL Performance Analyzer Task based on SQL Tuning Set

Replay SQL Tuning Set in Initial Environment
Replay SQL Tuning Set in Changed Environment
Compare Step 2 and Step 3

View Trial Comparison Report

Replay with Optimizer = 11.1.0.7
Compare andimake adjustments
Repeat 2 through 4 as needed

http://www.oracle.com/technology/oramag/oracle/08-
mar/o028sqlperf.html

SPA Optimizer Change

Create an SPA Task on
the STS imported

Task Information

Task Mame I
50QL Tuning Set I ,ﬂ’

Description I
Per-SQL Time Limit Llr'-JLIr-11TEI:1 I

@& TIP Time limit is on elapsed time of test execution of
SQL. EXPLAIN ONLY generates plans without test
execution.

Optimizer Versions

YVersion 1 1|Z|.2.|Z|.2 I Version 2 11.1.|Z|.'t'- I

Evaluation

Comparison r'.-1etri Elapsed Time I

Compare

SQL Performance Analyzer Task Result: SYS.10G-11G-UPGRADE

10G-116G-

UPGRADE
Task Owner SYS

Task Description

Task Name

Global Statistics
Projected Workload Elapsed Time

l
i

<
u
o
a
=
=
=
=
a
WA
=
=
o

B initial_sgl_trial B second_sgl_trial

Improvement Impact 2
Regression Impact

Overall Impact 25% 4t

Elapsed time
significantly
reduced

SQL Tuning Set Name

5TS Owner
Total SQL Statements
SQL Statements With Errors

S0OL Statement Count
500

250

SOL Count

Improwved

Fegresszed

dnchanged

Change in Elapsed Time

B Flan Changed

B Flan Unchanged

Majority of
SQLs didn’t
see their plan
changed!

Compare ...

Shows the SQL_IDs,
we can find from

vEsql

Top 10 SQL State Based on Impact on Workload
Net Impact on Workload Elapsed Time Net Impact on SQL % of Workload
(%) initial_sql_trial second_sqgl_trial (%) initial_sql_trial second_sql_trial Plan Changed
58.300 0.031 0.000 58.390 0.000 N
13.770 0.004 0.000 13.770 0.000 N
5.540 0.011 0.000 3.540 0.000 M
5.540 0.011 0.000 5.540 0.000 N
2.560 0.070 0.011 3.030
2.470 0.015 0.000

Plan changed for this SQL, Using
SQL_ID, check from v$sql

You can call upon SQL Tuning
Advisor to suggest possible

Clicking on the SQL_ID you can

see the various stats on the SQL tuning options on this SQL

SQL Details: 1rswbhxwhbpmr?

Parsing Schema SYS Execution Frequency 276 | Schedule SQL Tuning Advisar
= SOL Text
Single Execution Statistics
Execution Statistic Collected % of Workload
Execution Statistic Name Net Impact on Workload (%) initial_sql_trial second_sql_trial Net Impact on SQL (%) initial_sql_trial second_sql_trial
1t Elapsed Time 2.560 0.070 0.011 84.290 3.030 21.410
I} Parse Time -5.400 0.013 0.051 -292.310 1.850 8.010
{+ CPU Time 37.100 0.070 0.011 84.2090 44.020 14.920
1t Buffer Gets 0.100 22.000 20.000 9.090 1.090 0.9490
1+ Optimizer Cost 0.140 14.000 12.000 14.290 0.970 0.840
= Disk Reads 0.000 0.000 0.000 0.000 0.000 0.000
= Direct Writes 0.000 0.000 0.000 0.000 0.000 0.000
= Rows Processed 0.000 1.000 1.000 0.000 0.000 0.000

Symptom Findings
The structure of the SQL execution plan has changed.

The report continues with the plans
before and after the upgrade, so you

can compare them

SQL Plan Management

What happens when the plan is actually worse?

Perhaps the plan is better when a different
optimizer environment parameter is used?

In that case, we used SQL Plan Management to

let the optimizer pick the right plan from the pool of
plans

SPM

Analogous to Stored Outlines
But unlike outlines, baselines:

Calculate the plan anyway; but don’t use it.

The DBA must check and mark a plan good by “accepting”
it — a process called “evolving”

Have multiple plans in the baseline and choose the best

So it is the best of both worlds

Strategy with SPM

If a plan is “fixed”, that is used, regardless of the
presence of other plans

Capture all the plans from 10g to an SQL Tuning
Set

Load them to 11g after upgrade
Mark all of them as fixed

So, the plans will be the same as 10g
Turn on capture baselines; the new plans will be
stored in the baselines
Evolve them to see if any plan is better

OTN Article explains it all:
http://www.oracle.com/technology/oramag/oracle/0
9-mar/029spm.html

Test System Creation

109 109

NS

DEIEN

Original
System

Test System Creation

109 119

NS

Data Guard

removed
Original New
System SISIE

upgraded

. Start the DB Workload

Capture Process

. Simultaneously break Data

Guard

. Convert the Standby to

snapshot standby

. Upgrade the standby to

11g

Converting 10gR2 Standby to RW

Primary

Standby

alter database recover managed standby database
cancel;

create restore point gold guarantee flashback
database;

alter system
archivelog current;

alter system
log archive dest state
2 = defer;

alter database activate standby database;
shutdown/startup mount

alter database set standby database to
maximize performance;

alter system log archive dest state.2 = defer;
alter database open;

Test System Creation

Enable
Database for
Flashback

Original
System

Test System Creation

Create a

Restore

Point
11g

Replay

Capt
apture Workload

Workload

Original
System

Test System Creation

Flashback the The workload has
ase to the Peen captured only

Restore Point ©once; and replayed
11g several times.

Replay
Workload

Repeat this as
- often as needed
Original
System

Actual Upgrade

. 10g - 10g Standby
. Stop Data Guard
. Upgrade the standby to 11g

. This becomes the new
10g g production

. The old prod is still available

\‘/ as of that point in time

Data Guard

removed
Original New
System System

upgraded

Post Upgrade Tweaking

11g 119

N\

Suard Physical
Standby,
Standby Converted
from the old
system

Post Upgrade Tweaking

1. What should the value of cursor_space for time should be?
2. What will be the effect of the I/O constraining Resource Manager?
3. What will be effect of the Patch Update?

119

«
".
Data Guard Convert to
stopped Snapshot

New |Standby Standby
Prod

Post Upgrade Tweaking

. Take a Restore Point on
the standby

. Make changes on the
standby

. Capture workload from

— production

Workload

. Replay against the
standby

Standby . Flashback the standby
to the Restore. Point

. Repeat steps 2-5

Convert to Active Data Guard

11g 119

N\

suard

Standby

. Convert the standby

back to normal from
snapshot

. Stop Managed

Recovery Process

. Open the standby in

Read Only mode

. Restart the MRP

. Pure Read Only queries

can be directed-at the
Standby

Maintaining 2 Versions

109 119

NS

Golden
Replica
Original
System

. 10g - 10g Standby
. Break Data Guard
. Upgrade the standby to 11g

. This becomes the pre-

production

. Set up Golden Gate

replication (or Streams) to
apply SQLs to the 11g DB
from 109

. Stop the apply

. Redirect clients to the new
DB

. Reverse the replication
10g 11g o[¢=Teii[o]g}

N~

Golden
Replica
Original
System

Tools Used

Database Replay

SQL Performance Analyzer
SQL Tuning Advisor
Snapshot Standby

Active Data Guard

Golden Gate

Conclusion

Upgrade is just going to happen, you can’t avoid it

This is the best you can do to mitigate the risks, by
replaying the activities as faithfully as you can

Oracle’s Real Application Testing Suite allows you
exactly that — faithfully replaying the activities

Using Standby database you can minimize the risk of
failure during upgrade.

Snapshot Standby allows you to tweak the parameters
and sets the stage for future upgrades

aneycy Obrigado

Cnacbo Jeddiq

Danke N 0T

Grazie

EZ)

Merci -
Vour me[ﬂ x?b
Gracias BYMESZENE LT

