
 20 www.ukoug.org

SUMMER 14

Technology

OracleScene

Hadoop
for Oracle
Professionals

Or do you get lost in the jargon jungle that is littered with terms
like Hadoop, Map/Reduce, Hive and Sqoop? In this article, I
will attempt to explain these terms from the perspective of a
traditional database practitioner.

The recent news of the American National Security Agency
collecting and dissecting our call and email records is - to say
the least - hard to ignore, especially on the aftermath of that
disclosure. Political and ethical issues aside, the news does bring
up the focus on the aspect of computation involving massive
amounts of data. It’s one thing to slice and dice a reasonable
sized dataset such as sales data; but the sheer volume and
variety of data in the case of the phone and email records,
especially when correlated with other data, such as financial and
travel records to identify pseudo-criminal activities becomes a

Big Data is a term that
keeps showing up

more and more often;
not just in technical

literature but in casual
conversations as well.

Have you wondered
what exactly it means,

especially if you are
already familiar with
a relational database

such as Oracle?

formidable challenge. The question is whether the traditional
relational databases, such as Oracle and DB2, will scale well
to meet that challenge. The answer is, sadly, probably not; at
least not within typical monetary boundaries. But the challenge
of mining that massive dataset is not limited to the realm of
espionage and national security; it’s very much a concern for
corporations who - among other things - want to track customer
behaviour to fine tune their service and product offerings.

Perhaps it’s espionage of a different kind. The sources of their
data may be different: website logs, Facebook and Twitter feeds
instead of phone and email records; but the challenges are the
same - to articulate meaningful intelligence from enormous
amounts of completely unstructured and unpredictable data.
This is the fundamental challenge of the “Big Data”.

Arup Nanda
Oracle Technologist and Architect, Starwood Hotels and Resorts

Technology: Arup Nanda

www.ukoug.org 21

Meet the Vs
About a decade ago, Yahoo! - the then internet titan - faced the
same issue: how to present the selectivity of the individual web
pages on its portal by analysing the pattern of clicks in order to
attract advertisers. Google - years later - had a similar challenge
of indexing the entire World Wide Web in its servers to present
search results to the user very, very quickly. Both of these cases
represent the issues others probably didn’t face earlier - too
much, ever changing and unpredictable data. Here are the
relatively unique aspects of this challenge, which are known as
the Three Vs of Big Data.

• Volume - the sheer mass of the data made it difficult, if not
impossible, to sort through them;

• Velocity - the data was highly transient. Website logs are
relevant only for that time period; for a different period it was
different;

• Variety - the data was not pre-defined and not quite
structured - at least not the way we think of structure when
we consider relational databases.

Both these companies (or, in case of Google, before it became
a company when it was a research project at Stanford)
realised they are not going to address the challenges using the
traditional relational databases, at least not in the scale they
wanted. Necessity is the mother of invention. This challenge
forced them to develop their own tools and technologies. They
took a page from the super-computing paradigm of divide and
conquer to solve a complex problem. Instead of operating on
the dataset as a whole, they divided it into smaller chunks to
be processed by hundreds, even thousands of small - not big -
servers. This approach solved three basic, crippling problems:

1. There was no need to use large servers, which typically cost
exponentially lot more than small servers

2. There was a built-in data redundancy since the data was
replicated between these small servers

3. But the most important, it could scale well, very well, simply
by adding more of those small servers

This is the fundamental concept that gave birth to Hadoop.
But before we cover that, we need to learn about another
important concept.

Key-Value Pairs
A typical relational database works by logically arranging the
data into rows and columns. Here is an example. We decide on
a table design to hold your guests, named simply GUESTS. It
has the columns GUEST_ID, NAME, ADDRESS, PHONE. Later, the
company decides to provide some incentives to the spouses as
well and so we added another column - SPOUSE.

Everything was going well and then we discovered that customer
1 and spouse are no longer married and there is a new spouse.
However, the company decides to keep the names of the
ex-spouses as well for marketing analytics. Applying the right
relational design, we decide to break the spouse away from the
main table and create a new table named SPOUSES, which is a

child table of GUESTS, joined by GUEST_ID. This change required
massive code and database changes; but the company somehow
survives. A few days later they had the same issue with addresses
(people have different addresses - work, home, vacation) and
phone numbers (cell phone, home phone, work phone, assistant’s
phone). So they decide to break them into different tables. Again,
code and database changes invariably follow - more pain for the
gains. But the changes did not stop there. They had to add various
tables to record hobbies, associates, weights, dates of birth - the
list is endless. Everything we record requires a database change
and a code change. The bigger issue was that the code change
could occur only after the database was ready with the new
tables or the new columns. If the data came in when there was
no place for it yet, the data was discarded. This led to data and
application development challenges too hard to ignore. Further, in
their quest to build a 360 degree view of the guest, they collected
all the possible information; but there was no guarantee that all
the data points would be gathered. They were left with sparse
tables but with no guarantee that what they had would satisfy all
the needed data points.

If you look at the scenario above, you will find that the
fundamental issue is trying force a structure around a dataset
that inherently unstructured - a square peg in a round hole. The
lack of structure of the data is what makes it useful; but it’s
also the lack of structure that makes it difficult in a relational
database which demands structure. This is the primary issue
in capturing social media data - Twitter feeds, Facebook status
updates, LinkedIn updates and Pinterest posts. It’s impossible to
predict in advance, at least accurately, the exact information you
will expect to see in them. So, putting a structure around the
data storage not only makes life difficult for everyone - the DBAs
will constantly need to alter the structures and the developers/
designers will constantly wait for the structure to be in the form
they want - slowing down capture and analysis of data and
consequently the usefulness of the data.

So, what is the solution? If you think about it, think about
how we - human beings - process information. Do we parse
information in form of rows in some table? Probably not. We
process and store information by associations. For instance,
let’s say I have a friend named Rex. I probably have nuggets of
information like this:

 Last Name = Smith
 Lives at = 123 Main St, Anytown, U.K.
 Age = 40
 Birth Day = June 7th
 Wife = Regina
 Child = Pamela
 Pamela goes to school = Top Notch Academy
 Pamela is in Grade = 3

... and so on. Suppose I meet another person – Layla – who tells
me that her child also goes to Grade 3 in Top Notch Academy. My
brain probably goes through a sequence like this:

>>

 22 www.ukoug.org

SUMMER 14

Technology: Arup Nanda

OracleScene

 Search for “Top Notch Academy”
 Found it. It’s Pamela
 Search for Pamela.
 Found it. She is child of Rex
 Who is Rex’s wife?
 Found it. It’s Regina.
 Where do Rex and Regina live? ...

And finally, after this processing is all over, I say to Layla as a
part of the conversation, “What a coincidence! Pamela, the
daughter of my friends Rex and Regina Smith goes there as well.
Do you know them?”, “Yes, Regina is a friend of mine,” replies
Layla, ”and Pamela is in the same class as my daughter, that of
Mrs Ash”.

Immediately my brain processed this new piece of information
and filed the data as:

 Pamela’s Teacher = Mrs. Ash
 Regina’s Friend = Layla
 Layla’s Child Goes to = ...

Days later, I meet with Regina and mention to her that I met Layla
whose child went to Mrs. Ash’s class, the same one as Pamela.
“Glad you met Layla,” Regina says. “Oh by the way, Pamela is no
longer in that class. Now she is in Mr. Anthony’s class.”

Aha! My brain probably stored that information as:

 Pamela’s former teacher = Mrs. Ash

And it updated the already stored information:

 Pamela’s Teacher = Mr. Anthony

This is called storing by a name=value pair. You see I stored the
information as a pair of property and its value. As information
goes on, I keep adding more and more pairs. When I need to
retrieve information, I just get the proper property and by
associations, I get all the data I need. But the storing of data by
name=value pairs gives me enormous flexibility in storing all
kinds of information without modifying any data structures I
may currently have.

This is also how the variety in Big Data is tamed for processing.
Since the data coming of Twitter, Facebook, LinkedIn, Pinterest,
etc. is impossible to categorise in advance, it will be practically
impossible to put it all in the relational format. Therefore, a
name=value pair type storage is the logical step in compiling
and collating the data. The name is also known as “key”; so
the model is also called key-value pair. The value doesn’t have
to have a specific data type. In fact it’s probably a binary large
object (BLOB); so anything can go in there - booking amount,
birth dates, comments, XML documents, pictures, audio and
even movies. It provides an immense flexibility in capturing the
information that is inherently unstructured.

NoSQL Database
Now that you know about key-value pairs, the next logical
question you may have is, how do we store these? Our thoughts
about databases are typically coloured by our long-standing

association with relational databases, making them almost
synonymous. Before relational databases were there, even as a
concept, big machines called mainframes ruled the earth. The
databases inside them were stored in hierarchical format. One
such database from IBM was IMS/DB, which was hierarchical.
Later, when relational databases were up and coming, another
type of database concept, called a network database, was
developed to compete against it. An example of that category
was IDMS (now owned by Computer Associates), developed
for mainframes. The point is, relational databases were not the
answer to all the questions then; and it is clear that they are not
now either.

This leads to the development of a different type of database
technologies based on the key-value model. Relational database
systems are queried by SQL language which, I am sure, is
familiar to anyone reading this article. SQL is a set-oriented
language - it operates on sets of data. In the key-value pair
mode, however, that does not work anymore. Therefore these
key-value databases are usually known as NoSQL, to separate
them from the relational SQL-based counterparts. However,
since their original introduction some NoSQL databases
actually support SQL, which is why “NoSQL” is not a correct term
anymore. So sometimes they are referred to as “Not only SQL”
databases. But the point is that their structure is not dependent
on a relational model. How the data is stored exactly is usually
left to the implementer. Some examples of the NoSQL are
MongoDB, Dynamo, Big Table (from Google) etc. Oracle has one
called Oracle Enterprise NoSQL database.

I would stress here that almost any type of non-relational
database can be classified as NoSQL; not just the name-value
pair models. For instance, Object Store—an object database is
also NoSQL. But for this paper, I am assuming only key-value pair
database as the NoSQL one.

Map/Reduce
Let’s summarise what we have learned so far:

1. The key-value pair model in databases offer flexibility in data
storage without the need for a predefined table structure.

2. The data can be distributed across many machines where they
are independently processed and then collated.

3. When the system gets a large chunk of data, e.g. a Facebook
feed, the first task is to break it down to smaller chunks which
are then fed to several machines simultaneously. This is how
the machines perform parallel processing on the set of data.
Note that all these machines get their independent chunk
of data; they don’t all work on the same dataset. The act of
dividing the work and assigning a sub-chunk to a specific
machine is called Mapping. Later the output of these mapped
results are collated to form summaries—called “Reducing”.
These two activities are almost always performed together;
hence the combined operation is known as Map/Reduce.

Here is a very rudimentary, but practical, example of Map/
Reduce. Suppose you get Facebook feeds on your pages and
you are expected to find out the total of likes for our company’s
recent post. Facebook feed comes in the form of a massive
dataset. The first task is to divide that among many servers, a
principle described earlier to make the process scale well - or
Mapping. Once the dataset is mapped, each machine runs some
code to extract and compile the information and then presents
the data to some central co-ordinator to collate for the final

Technology: Arup Nanda

www.ukoug.org 23

time. Here is a pseudo-code for the process for each server doing
the processing on a subset of data:

 get post
 while (there_are_remaining_posts) loop
 extract status of “like” for the specific post
 if status = “like” then
 like_count := like_count + 1
 else
 no_comment := no_comment + 1
 end if
 end loop
end

Let’s name this program counter(). Counter runs on all the
servers, which are called Nodes. As shown in the figure, there are
three nodes. The raw dataset is divided into three sub-datasets
which are then fed to each of the three Nodes. A copy of the
sub dataset is kept on another server as well. That takes care
of redundancy of the data and the nodes. Each node performs
its computation and sends its results to an intermediate result
set where they are collated. If a node dies in the middle of the
process, other nodes can be pulled into processing the sub-
dataset from the copies they already have.

Map/Reduce Processing
How does this help? It does in many ways. Let’s see:

• First, since the data is stored in chunks and the copy of
a chunk is stored in a different node, there is built-in
redundancy. There is no need to protect the data being fed
since there is a copy available elsewhere.

• Second, since the data is available elsewhere, if a node fails,
all that needs to be done is that some other nodes will pick up
the slack. There is no need to reshuffle or restart the job.

• Third, since the nodes all perform tasks independently, when
the data size becomes larger, all you have to do is to add a new
node. Now the data will be divided four ways instead of three
and so will be processing load.

This is very similar to parallel query processes in Oracle
Databases, with PQ servers being analogous to nodes.

There are two very important points to note here:

1. The subset of data each node gets is not needed to be viewed
by all the nodes. Each node gets its own set of data to be
processed. A copy of the subset is maintained in a different

node making simultaneous access to the data unnecessary.
This means you can have the data in a locally attached
storage; not in expensive SANs. This is not only brings cost
significantly down but may perform better as well due to the
local access. As cost of Solid State Devices and flash-based
storage plummets, it could also mean that the storage cost for
performance will become even better.

2. The nodes need not be superfast. A relatively simple
commodity class server is enough for the processing as
opposed to a large server. Typically servers are priced for their
use, e.g. an enterprise class server with 32 CPUs is probably
roughly equivalent in performance to eight 4-CPU blades. But
the cost of the former is way more than eight times the cost
of the blade server. This model takes advantage of the cheaper
computers by scaling horizontally; not vertically.

Hadoop
Now that you know how the processing data in parallel and
using a concept called Map/Reduce allows you to shove in
several compute intensive applications to dissect large amounts
of data, you will often wonder - there are a lot of moving parts
to be taken care of just to empower this process. In a monolithic
server environment you just have to kick off multiple copies of
the program. The operating system does the job of scheduling
these programs on the available CPUs, taking them off the
CPU (paging) to roll in another process, prevent processes from
corrupting each other’s’ memory, etc. Now that these processes
are occurring on multiple computers, there has to be all these
manual processes to make sure they work. For instance, in this
model you have to ensure that the jobs are split between the
nodes reasonably equally, the dataset is split equitably, the
queue for feeding data and getting data back from the Map/
Reduce jobs are properly maintained, the jobs fail over in case of
node failure, and so on. In short, you need sort of an operating
system of operating systems to manage all these nodes as a
monolithic processor.

What would you do if these operating procedures were already
defined for you? Well, that would make things really easy,
wouldn’t it? You can then focus on what you are good at -
developing the procedures to slice and dice the data and derive
intelligence from it. Well, the good news is that this “procedure”
or the framework is already developed and available. It is known
as Hadoop. It’s an open source offering, similar to Mozilla
and Linux; no single company has exclusive ownership of it.
However, many companies have adopted it and evolved it into
their offerings, similar to Linux distributions, such as Red Hat,
SuSe and Oracle Enterprise Linux. Some of those companies are
Cloudera, Hortonworks, IBM, etc. The Hadoop framework runs
on all the nodes of the cluster. Just to be clear, the cluster is a
Hadoop cluster; not an Oracle RAC cluster.

A very important point to note here is that Hadoop is just a
framework; not the actual program that performs Map/Reduce.
Compare that to the operating system analogy; an OS like
Windows does not offer a spreadsheet. You will need to either
develop or buy an off the shelf product such as Excel to have
that functionality. Similarly, Hadoop offers a platform to run the
Map/Reduce programs that you develop and you put that logic
in the code what you “map” and how you “reduce”.

Remember another important advantage you saw in this model
earlier - the ability to replicate data between multiple nodes so
that the failure of a single node does not cause the processing to >>

 24 www.ukoug.org

SUMMER 14

Technology: Arup Nanda

OracleScene

be abandoned. This is offered through a new type of file system
called Hadoop Distributed File System (HDFS). HDFS, which is
a distributed (and not a clustered) file system, by default has
three copies of data on three different nodes - two on the same
rack and the third on a different rack. The nodes communicate
to each other using a HDFS-specific protocol that is built on
TCP/IP. The nodes are aware of the data present on the other
nodes, which is precisely what allows Hadoop job scheduler to
divide the work among the nodes. Oh, by the way, HDFS is not
absolutely required for Hadoop; but as you can see, HDFS is the
only way for Hadoop to know which node has what data for
smart job scheduling. Without it, the division of labour will not
be as efficient.

Pig
Let me once again reiterate one important property of Hadoop.
It is a framework for dividing the work among nodes and making
sure the assigned work gets executed. The actual work itself is
not the responsibility of Hadoop. In the earlier example I used
counter() as a program to count the likes in Facebook page. You
must write counter(); Hadoop does not do that for you. So, the
next set of questions is, how do you write this program? What
languages can you use? etc.

Hadoop typically expects the programs to be in Java. This could
pose as an issue for many. End users are not necessarily proficient
in a language like Java. Additionally, Java is a third generation
language that takes a lot of lines to perform complex calculation,
making it inherently inefficient. Therefore, Hadoop provides
another approach: a framework for dividing the work very easily.
This is called Pig. The interaction with Pig is through a much less
complex and user-friendly language called Pig Latin. Pig Latin,
like SQL, is a fourth generation language that is designed to
accomplish a lot of tasks with few lines of code. Let me show an
example of Pig Latin. Suppose you want to find out the average
page ranks of the categories of URLs where the click rate is at
least 1 million and the minimum page rank is 0.2. You would
write the following SQL if the data were in a relational database:

select category, avg(pagerank)
from urls
where pagerank > 0.2
group by category
having count(*) > 1000000

The same query in Pig Latin will look like:

good_urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good_urls BY category;
big_groups = FILTER groups BY COUNT(good_urls)>1000000;
output = FOREACH big_groups GENERATE category, AVG(good_urls.
pagerank);

Notice how similar they are. But the important point to note
here is that Pig Latin is a typical programming language that has
a sequence of steps to accomplish the objective, much like SQL.
Likewise, similar to SQL, Pig Latin hides the exact details of the
constructs such as FILTER, GROUP, etc. making the programmer
more efficient.

HBase
At the end of the day, you want to store data in some form and
you are likely comfortable with the concept of a “database”.

HDFS is not a database; it’s just a storage system, similar to a
file system on a server. If you want to store data in a database,
you can’t just use the file system, you have to build a database
which could be as simple as a text file with columns and rows or
as sophisticated as a full blown database management system
such as Oracle.

But wait, you may be wondering here, what is the business
about “columns and rows”? Didn’t we just establish that
rows and columns are not good for the use case for which we
designed a key-value pair system just to avoid that structure? If
so, why are we again introducing the old column-row model?

The fact is that even if we store as key-value, we are comfortable
in looking at most data using row-column model. It’s just the
way we are designed and perceive information, at least large
chunks of similar information. Can’t we have the best of both
worlds - store them in a flexible key-value model; but build
an abstraction layer of the familiar row-column model? The
answer is yes. HBase is the tool that does it. HBase is database
management layer that presents the data on HDFS to the user
in a row-column format. It is built on the Bigtable concept
introduced at Google. Designed to store massive amounts of
data, HBase is optimised for data access in volumes, not row-
by-row as in a traditional database. Transactions are available in
HBase, but they work on one row at a time.

HBase is not the only database management system for
Hadoop, though. There are others such as CouchDB, Cassandra,
Hypertable and more.

Hive
Now that you learned how Hadoop fills a major void for
computations on a massive dataset, you can’t help but see
the significance for data warehouses where massive datasets
are common. Also common are jobs that churn through this
data. There is a little challenge, however. Remember the NoSQL
databases mentioned earlier? That means they do not support
SQL. To get the data you have to write a program using the APIs
the vendor supplies making it inefficient and time consuming.
Issues like this gave rise to fourth generation languages like SQL,
which brought the power of quick and effective queries to users.
In data warehouses, it was especially true since the power users
issued queries after getting the result from the previous queries.
It was like a conversation - ask a question, get the answer,
formulate your next question - and so on. If the conversation
were dependent on writing third generation language programs,
it would have been impossible to be effective.

With that in mind, consider the implications of the lack of SQL
in these databases highly suitable for data warehouses. This
requirement to write a program to get the data every time
would have rendered it ineffective. Well, not to worry, Hadoop
has another product that allows an SQL-like language called
HiveQL. Just as users could query relational databases with SQL
very quickly, HiveQL allows users to get the data for analytical
processing directly. It was initially developed at Facebook. Here is
an example of a HiveQL query:

select count(*)
from store_sales ss
 join household_demographics hd on (ss.ss_hdemo_sk = hd.hd_
demo_sk)
 join time_dim t on (ss.ss_sold_time_sk = t.t_time_sk)
 join store s on (s.s_store_sk = ss.ss_store_sk)

Technology: Arup Nanda

www.ukoug.org 25

see extremely high performance connectors for
databases.

Flume Another ingestion tool.
Zookeeper A coordination engine that coordinates the

components in the Hadoop ecosystem.
Hue A web interface to run Hive queries to get data from

HBase. Think of this as SQL*Plus in Oracle.

The Players
So, who are the players for this new branch of data processing?
The major players are show below with small description.
This list is by no means exhaustive. It simply is a collection of
companies and products I have studied.

• Cloudera
They have their distribution called, what else, Cloudera
Distribution for Hadoop (CDH). But perhaps the most
impressive from them is Impala - a real-time SQL like interface
to query data from the Hadoop cluster.

• Hortonworks
Many of the folks who founded this company came from
Google and Yahoo! where they built or added to the building
blocks of Hadoop.

• IBM
They have a suite called Big Insights which has their
distribution of Hadoop. This is one of the very few companies
who offer both the hardware and software. The most
impressive feature from IBM is a product called Streams that
can mine data from a non-structured stream like Facebook in
real-time and send alerts and data feeds to other systems.

• Dell
Like IBM they also have a hardware/software combination
running a licensed version of Cloudera, along with Pentaho
Business Analytics.

• Pivotal
 This is a Platform-as-a-Service offering from a joint venture

between EMC and VMWare, with investment from GE. This
has the open source Hadoop. The most notable in this offering
is the language called HAQ, which is an ANSI SQL compliant
language.

• MapR
They also use open source Hadoop, but they use HDFS on the
top of their own file system which is based on NFS. This makes
the file system available even outside of HDFS, which may be
useful in cases like massive data loads.

where
 t.t_hour = 8
 t.t_minute >= 30
 hd.hd_dep_count = 2
order by cnt;

Comparing to Oracle
When we talk about clustering in Hadoop, you may not help
wonder - shouldn’t the same functionality be provided by
Oracle Real Application Cluster? Well, the short answer is, a big
resounding NO. Oracle RAC combines the power of multiple
nodes in the cluster which communicate with one another and
transfer data (cache fusion), but that’s where the similarity ends.
The biggest difference is the way the datasets are accessed. In
RAC, the datasets are common, i.e. they must be visible to all the
nodes of the cluster. In Hadoop, the datasets are specific to the
individual nodes, which allow them to be local. The file systems in
RAC can’t be local; they have to be clustered or available globally,
either by a clustered file system, shared volumes, clustered volume
managers (such as ASM) or by NFS mounting. In Hadoop the local
files are replicated to other nodes, which means there is no reason
to create a RAID level protection at the storage level. ASM does
provide a software level mirroring, which may sound similar to
Hadoop’s replication, but remember, ASM’s mirrors are not node
specific. The mirrored copies of ASM must be visible to all the
nodes. There is a preferred node concept in ASM, but that simply
means that data is read by a specific node from one mirror copy.
The mirror copies can’t be local, they must be globally visible.

Besides, Oracle RAC is for a relational database. The Hadoop
cluster, especially the HBase database is not one. There are
traits such as transactional integrity, multiple concurrent writes
that are innate features of any modern database system such
as Oracle. The design of HBase does not necessarily led itself
towards those goals. The HBase database will eventually be
consistent, but is not guaranteed to be consistent at a specific
point in time or within the scope of a transaction—something
you take for granted in an Oracle database. Therefore, HBase is
not a great candidate for systems that require that consistency,
such as stock trading systems, telephone call managers, point of
sale systems, etc. So while both are technically called databases,
a comparison may not be fair to either HBase (or Hadoop) or
RAC. They are like apples and tomatoes. (Tomato is technically a
fruit, just in case you are wondering about this analogy).

Other Terms
Now that you understand the fundamental building blocks of
the big data universe, let’s jump to understand other important
components as well. Due to space limitations I am not going to
talk much on these terms individually but just enough to steer
you in the direction of getting to know more.

Sqoop: Short for “SQL to Hadoop”, it’s a tool that is used
to “ingest”, i.e. pull data into a Hadoop system (or,
more specifically an HDFS store) from any database
that supports JDBC, including common ones like
Oracle, Sybase, DB2, SQL Server, etc. Remember, the
actual process of ingestion is always relegated to
a Map/Reduce job which is spread over the nodes
of the cluster. Sqoop makes it easier by producing
snippets of code (called “writables”, to differentiate
itself from “executables”) for the Map/Reduce jobs.
Over the years, Sqoop has flourished and today we

>>

 26 www.ukoug.org

SUMMER 14

Technology: Arup Nanda

OracleScene

ABOUT
THE
AUTHOR

Arup Nanda
Oracle Technologist and Architect, Starwood Hotels and Resorts

Arup Nanda (arup@proligence.com) has been working as an Oracle DBA for last 20 years
touching all aspects of the database from modeling to performance tuning to security
and disaster recovery. He has presented 300 sessions, written 500 articles, co-authored 5
books and delivered trainings in 22 countries. He is an Oracle ACE Director, a member
of Oak Table Network, a member of Board of Directors of Exadata SIG and an
editor for SELECT journal. He was the recipient of two prestigious awards from
Oracle: DBA of the Year in 2003 and Architect of the Year in 2012.

Summary
If the buzzing of the buzzwords surrounding any new technology annoys you and all you get is a ton of websites on the
topic but not a small consolidated compilation of concepts, you are just like me. I was frustrated by the lack of information
in a digestible form on these buzzwords that are too important to ignore but would take too much time to understand fully.
Here is my small effort to bridge that gap and get you going on your quest for more information. If you have 100s or 1000s of
questions after reading this, I would congratulate myself - that is precisely what my objective was. For instance, how HiveQL
differs from SQL or how Map/Reduce jobs are written - these are questions that should be flying in your mind right now and
will be the focus for the research later.

BMS Partnership
with UKOUG
Delivers Direct ROI

Established in 1994,
Beoley Mill Software (BMS)
is a leading installation
and support organisation
for JD Edwards products,
providing a complete
range of services to help
customers reach their
strategic objectives.

Ten years ago, BMS was a new
organisation offering an exciting USP to
the JD Edwards community. Generating
brand awareness, exposure to the market
and explaining their offering to potential
clients was imperative to the business’
success and the management team
considered various ways that this could
be achieved.

In order to meet their challenging
objectives, BMS experimented by taking
a small stand and some sponsorship at
UKOUG’s JD Edwards conference in 1994.
The results were fantastic. Exhibiting gave
BMS a platform to talk face to face with
genuinely engaged potential customers
generating many leads to follow up on.

The work received from their first event
turned into £240,000 of revenue, from only
£3,000 expenditure.

BMS have returned to UKOUG’s JD Edwards
Conference every year since and now
contribute to the conference sessions, as
well as taking the two largest stands in the
exhibition hall, filling them with a range
of personnel to maximise the interaction
with present and prospective customers.
This has helped BMS to become the UK
market leader in their field with a turnover
of £12 million.

Commenting on this success, Stuart
Rimmer, Chief Executive Officer of BMS
commented “We would have eventually

reached our goal, but without
partnering with UKOUG it would have
taken far longer.”

Stuart continues, “Looking ahead,
partnering with UKOUG is an essential
element of BMS’s marketing mix,
ensuring we retain our position in the
market by continuing to engage with new
customers and building on relationship
with existing ones.”

BMS employees volunteer with the UKOUG
community which offers another method
to meet the needs to the JD Edwards
community, as well as providing valuable
insight into customers’ needs, enabling
effective planning for the future.

UKOUG offers a number of bespoke marketing opportunities for Partner members. To find out how we can support the
promotion of your organisation contact Kerry Stuart at opportunities@ukoug.org

PARTNER CASE STUDY

