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Why Analyze
• “The Database is Slow”!

– Storage, CPU, memory, runqueues all affect the 
performance

– Know what specifically is causing them to be slow

• To build a profile of the application

• To check scalability

– You have developed against non-RAC

• Will it scale up in RAC?

– Currently it runs with 100 users

• What will happen if we have 1000?

• Effective Tuning

– take a baseline before some tuning exercise

– re-measure to see if the tuning was effective

– check the resource usage of applications
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What to Measure

• Timing of Events

– An Oracle session is in any of these three states

• Doing something useful (consuming CPU)                    U

• Waiting for some resource (a block from disk, a latch)  W

• Idle (Waiting for some work from the user)                     I

– Total Time = U+W+I

– Accurately measure each component

• Resource Usage

– Latches, Locks

– Redo, Undo

– Logical I/O 
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Inter-instance Round Trip Times
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How to Get the Times

• You can get these times by examining the session in real 

time

• There are several issues

– You should be watching in real time 

– You will miss the times when these events are past

– How will you know the sessionID in advance?

• Other Option – Tracing

• There is an event called 10046 which allows you to 

enable tracing in sessions
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Enabling Trace

• SQL Trace can be enabled by

–

• You can set the event at the session level so that it can 

capture the wait events.

• It produces a trace file similar to sql_trace, but with 

extended trace data

– With information on how much time was spent where

• It creates a trace file in the user_dump_dir

– In 11g, the udump dir is inside the diag structure
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Different Session

• To set SQL Trace in a different session

• To set 10046 Trace in a different session:

– The same effect as
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DBM_MONITOR
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• From 10g onwards, you can enable it any other session 

by:

To capture wait 

events

To capture bind 

variables



Analyzing
• Tracefiles are not quite readable

• To analyze the tracefile (SQL Trace or 
the 10046 Trace)

– A tool called tkprof

• Other Analyzers

– Trace Analyzer (downloadable from 
MetaLink)

– Third party analyzers

• Hotsos Profiler

• Trivadis TVD$XSTAT analyzer
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Trace Analyzer

• A much better tool to analyze trace files.

• Refer to MetaLink Doc 224270.1 for download and  

instructions on use

• A small zip file, with bunch of directories

• Connect as SYS and run tacreate.sql to create the Trace 

Analyzer schema (TRCANLZR)

• Run it
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Output
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Trace Analyzer
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• It generates

– The log file of the run. Scan for errors.

– The tkprof output of the trace file

– The analysis in text format

– The analysis in html format



The Connection Pool Effect

• Most applications use connection pool

• A “pool” of connections connected to the database

• When the demand on the connection from the pool 

grows, the pool creates new database sessions

• When the demand lessens, the sessions are 

disconnected

• The SID is not known
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Enabling Tracing in Future Sessions
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• Service Names start tracing when any session 

connected with that service name will be traced

• This will trace any session connected with service_name

APP

• Even future sessions!

Warning: This is case 
sensitive; so “app” 
and “APP” are 
different.



What’s Special About RAC

• Multiple Instances multiple hosts

• The tracefiles are on different hosts

• Application connect through a connection 

pool
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Multiple Tracefiles

• Tracefiles are generated for each Oracle session

• So, a single user’s action can potentially go to many 

sessions many tracefiles

• Workaround: create only one session in the connection 

pool
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Mixed Activities

• But that does not solve the problem

• The single Oracle session will service activities of many 

users

• So the tracefile will have activities of all users; not just 

the user you are interested in.
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Consolidation of Tracefiles

• The trcsess utility comes handy in that case

– It combines all tracefiles into one!

– It creates the tracefile alltraces.trc from all the tracefiles in 

that directory where activities by all sessions connected 

with the app service

• Now you can treat this new tracefile as a regular 

tracefile.
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TRCSESS
• The utility has many options
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Other Profiles

• So far we talked about timings of various activities

• Applications consume resources

– Buffers (consistent gets)

• Which in turn drives the I/O up

– Latches (cache buffer chains, library cache, etc.)

– Locks

– CPU

– Redo Generation

• All these resources affect the scalability of the 

applications

– Especially in RAC

• You need to measure these resource stats as well
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Scalability
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Many develop apps 
against a database 
running on their laptops; 
deem the performance 
acceptable and assume
that the performance will 
be similar in a multi-user 
system! 



Source of Resource Stats

• The best source is V$SESSTAT

• Take measurement before and after the application run

• Measure the difference; it’s the resource utilized
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Runstats Package

• Tom Kyte has an excellent package that can automate 

this for you.

– http://asktom.oracle.com/pls/asktom/ASKTOM.download_fi

le?p_file=6551378329289980701

• This allows you to build a test harness

2. Run the application

4. Run the application (changed)

• It shows the difference between the two runs for latches 

and statistics
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Output

• Shows the resources have been consumed – latches and other 
stats. 

• Remember –latches are not for this session; they are 
systemwide. So, if you have other sessions running right now, 
you will not be able to see the effects of this session alone on 
latches.
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What about Future Sessions

• Another procedure in DBMS_MONITOR

• It enables statistics collection for all client calls with client 

identifier CLIENT1

• You set the client identifier by
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Recording of Stats

• The stats are exposed through V$CLIENT_STATS

• The stats are aggregated, i.e. all the stats are for a 

specific client_identifier; not individual sessions

• A subset of the stats; not all
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V$CLIENT_STATS
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Other Stats Collection

• On Service Name and/or Module Name and Actions

• Here we want to capture sessions starting with 
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Default is all 
actions



Checking Stats Collection

• To find out which type of aggregation is enabled
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Other Sessions
• How do you start measuring when the session is not yet 

connected?

– When the stats on individual sessions is desirable

– When the client id, service, etc. are not alterable

• BYOT - Build your own tool

– Create a post-login trigger to write the stats at the 
beginning of a session to a table

– Write the values at the end of the session using a pre-
logoff trigger

– Measure the resource usage(the difference)

• Download the scripts to build the complete tool from my 
blog. 
– http://arup.blogspot.com/2010/09/other-day-i-was-putting-together-

my.html
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Inference from Resource Usage

• Watch out for stats that increase with load

– Redo size

• More the redo, more time for I/O and redo latches

– Session Logical Reads

• More I/O, indicates more buffers

• More inter-instance locking, messaging

• DW environment: more buffer flush

– Cache Buffer Chain Latch

• More latching more CPU usage

– If these stats and latches are high, the application will 

scale negatively

– If you test in a small environment, you must measure it to 

test its scalability on a much bigger system.
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Putting it all Together
• Profile Components

– 10046 Tracing

– Combining Traces to a Single File

– Getting the time spent at different components

– Gather Resource Usage

• Strategy

– Capture all the profile components

– Make changes to your app

– Capture all the profile components

• Decision

– Better, worse?

– How much?

– Decide on the next course of action – the scientific way.
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Thank You!

Questions?
Email: arup@proligence.com

Blog: arup@blogspot.com
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