Arup Nanda RAC

Starwood Hotels

Why Analyze

« “The Database is Slow”!

— Storage, CPU, memory, runqueues all affect the
performance

— Know what specifically is causing them to be slow
« To build a profile of the application
« To check scalability

— You have developed against non-RAC
« Willit scale up in RAC?

— Currently it runs with 100 users
« What will happen if we have 10007

 Effective Tuning
— take a baseline before some tuning exercise
— re-measure to see if the tuning was effective
— check the resource usage of applications

What to Measure

* Timing of Events
— An Oracle session is in any of these three states
« Doing something useful (consuming CPU) U
« Waiting for some resource (a block from disk, a latch) W
« ldle (Waiting for some work from the user) I
— Total Time = U+W+I
— Accurately measure each component
 Resource Usage
— Latches, Locks
— Redo, Undo
— Logical 1/0

ﬁ'— R

Inter-instance Round Trip Times

Requesting Instance Network Receilving Instance

round-trip time

N WiV u® 49 O D ‘
e

How to Get the Times

* You can get these times by examining the session in real
time
select state, seconds in wait, wait time, event
from v$session
where sid = <sessionid>

* There are several issues
— You should be watching in real time
— You will miss the times when these events are past
— How will you know the sessionID in advance?

* Other Option — Tracing

* There is an event called 10046 which allows you to
enable tracing in sessions

Enabling Trace

SQL Trace can be enabled by
— alter session set sql trace = true;

You can set the event at the session level so that it can
capture the wait events.

alter session set events '10046 trace name context
forever, level 12°

It produces a trace file similar to sqgl _trace, but with
extended trace data

— With information on how much time was spent where
It creates a trace file in the user_dump _dir

— In 119, the udump dir is inside the diag structure

Different Session

* To set SQL Trace Iin a different session
dbms_system.set sql trace in session
(<sid>,<serial#>,true);
* To set 10046 Trace Iin a different session:
dbms_system.set ev (<sid>,<ser#>,10046,<level#>,null)

— The same effect as

alter session set events '10046 trace name context
forever, level <level#>'

o MONITOR

DBM_MONITOR

 From 10g onwards, you can enable it any other session

by:
begin
dbms monitor.session trace enable (
session 1id => 131,
serial_num => 5879, To capture wait
waits => true events
binds => true
) . To capture bind
g variables
end;

/

Analyzing
« Tracefiles are not quite readable

« To analyze the tracefile (SQL Trace or
the 10046 Trace)
— Atool called tkprof

tkprof D111D1 ora 9204.trc
D111D1 ora 9204.out
explain=arup/arup waits=yes
Sys=no

* Other Analyzers

— Trace Analyzer (downloadable from
MetaLink)
— Third party analyzers
« Hotsos Profiler
 Trivadis TVD$XSTAT analyzer

EXEC
#2:c=3000,€e=56090,p=0,Ccr=0,
ep=1,0g=4,plh=2853959010, t:
4696890449895

FETCH
#2:c=0,e=109,p=0,cr=4,cu=0,
og=4,plh=2853959010, tim=12/
890450092STAT #2 id=1 cnt=:
obj=18 op="TABLE ACCESS BY
(cr=4 pr=0 pw=0 time=0 us
card=1)"

STAT #2 id=2 cnt=1 pid=1 pc
op="INDEX RANGE SCAN I OBIJ:
0 time=0 us cost=3 size=0 ¢
CLOSE
#2:c=0,e=41500,dep=1, type-=:
91640

Trace Analyzer

A much better tool to analyze trace files.

Refer to MetaLink Doc 224270.1 for download and
Instructions on use

A small zip file, with bunch of directories

Connect as SYS and run tacreate.sql to create the Trace
Analyzer schema (TRCANLZR)

Run it

cd trca/run

sqlplus trcanlzr/trcanlzr

@trcanlzr <tracefile name in udump dir>

10

Output

Value passed to trcanlzr.sql:
TRACE_FILENAME: D111D1 ora 9205.trc
. analyzing D111D1 ora 9205.trc

Trace Analyzer completed.
Review first trcanlzr error.log file for possible fatal errors.
Review next trcanlzr 22881.log for parsing messages and totals.

. copying now generated files into local directory
TKPROF: Release 11.1.0.7.0 - Production on Wed Oct 28 11:45:05 2009
Copyright (c) 1982, 2007, Oracle. All rights reserved.

adding: trcanlzr 22881 c.html (deflated 90%)

adding: trcanlzr 22881 c.log (deflated 82%
adding: trcanlzr 22881 c.txt (deflated 84%

agging: ’crcanillzr:228817{ka(0(}c scciefl?jted/%S 5) These files are produced in
adding: trcanlzr error.log (deflated 72% i
test ofgtrcanlzr_2§881.zip (§K the local directory

... trcanlzr 22881.zip has been created

TRCANLZR completed.

11

Trace Analyzer

* [tgenerates
— The log file of the run. Scan for errors.
— The tkprof output of the trace file
— The analysis in text format
— The analysis in html format

Trace Analyzer 11.3.0.2 Report:

011101 _ora 9205.trc (187834 bytes)

Iotal Trace Response Time: 1647.264 secs.

20089-0CT-28 11:15:00.603 (start of first db cell in trace).
2009-0CT-28 11:42:27.8686 (end of last db call in trace).

¢ Glossary of Terms Used
¢ Response Time Summar
- e 17 T3 e el Trht o3
Cverall Time and Totals
¢ Non-Recursive Time and Totals
¢ RBecursive Time and Totals
« Top SQL
M D R - =y
¢ Non-Becursive 5QL
T Cans fp———
e S50L Genealogy
¢ ITndividual SQL
Crrer s 1 CTammant iy [—
¢ Overall Segment 0 Wait S 12
s Hot 'C Blocks

trcanlz:_22881.html

12

The Connection Pool Effect

* Most applications use connection pool
« A"pool” of connections connected to the database

 Whenthe demand on the connection from the pool
grows, the pool creates new database sessions

« Whenthe demand lessens, the sessions are
disconnected

« The SID is not known

o
o
a ¥
c
C
-
&)
Q
c
c
o
O

13

Enabling Tracing in Future Sessions

« Service Names start tracing when any session
connected with that service name will be traced
begin
dbms monitor.serv mod act trace enable (
service name => 'APP’,
action name => dbms™wgnitor.all actions,

Wélts => true, Warning: This is case
binds => true sensitive; so “app”
)3 and “APP” are

different.

end;

« This will trace any session connected with service_name
APP

 Even future sessions!

14

What's Special About RAC

« Multiple Instances <@ multiple hosts
 The tracefiles are on different hosts

« Application connect through a connection
pool

Connect.nn Pool

Tracefile
generated
here

Tracefile
generated
here

15

Multiple Tracefiles

Tracefiles are generated for each Oracle session

So, a single user’s action can potentially go to many
sessions <@ many tracefiles

Workaround: create only one session in the connection
pool

All tracefile
generated

— .1
dEddIVIIa

Connect.on Pool

16

Mixed Activities

« But that does not solve the problem

« The single Oracle session will service activities of many
users

« So the tracefile will have activities of all users; not just
the user you are interested In.

A single tracefileis
generated here for
allusers

Sessionl

Connection Pcol

17

Consolidation of Tracefiles

* The trcsess utility comes handy in that case
— It combines all tracefiles into one!
trcsess output=alltraces.trc service=app *.trc

— It creates the tracefile alltraces.trc from all the tracefiles in
that directory where activities by all sessions connected
with the app service

* Now you can treat this new tracefile as a regular
tracefile.

$ tkprof alltraces.trc alltraces.out sys=no ..

18

TRCSESS

« The utility has many options

trcsess [output=<output file name >]

[session=<session ID>] [clientid=<clientid>]

[service=<service name>] [action=<action name>]
'module=<module name>] <trace file names>

output=<output file name> output destination default
being standard output.

session=<session Id> session to be traced.
Session id is a combination of SID and Serial# e.g. 8.13.

clientid=<clientid> clientid to be traced.
service=<service name> service to be traced.
action=<action name> action to be traced.
module=<module name> module to be traced.

19

Other Profiles

So far we talked about timings of various activities

« Applications consume resources

— Buffers (consistent gets)
« Whichin turn drives the I1/O up

— Latches (cache buffer chains, library cache, etc.)
— Locks

— CPU

— Redo Generation

« Allthese resources affect the scalability of the

applications
— Especially in RAC
You need to measure these resource stats as well

20

e

Scalabilit
4 /I\/Iany develop apps \

against a database
running on their laptops;
deem the performance
acceptable and assume
that the performance will
be similar in a multi-user

)
N system!
CJ0 . \ y /

Perfectly scalable

Response Time

Number of Sessions

STARWOOD -

Source of Resource Stats

 The best source is VISESSTAT

select name, value
from v$sesstat s, v$statname n
where n.statistic# = s.statistic#

and
n.name in (
'CPU used by this session’,

"Yedo sizef

)

and sid = 149;
« Take measurement before and after the application run
« Measure the difference; it's the resource utilized

22

Runstats Package

« Tom Kyte has an excellent package that can automate
this for you.

— http://asktom.oracle.com/pls/asktom/ASKTOM.download fi

le?p_file=6551378329289980701

« This allows you to build a test harness
1. SQL> exec runStats pkg.rs start;

2. Run the application

3. SQL> exec runStats pkg.rs middle;
4. Run the application (changed)

5. SOQL> exec runStats pkg.rs stop;

* |tshows the difference between the two runs for latches
and statistics

23

http://asktom.oracle.com/pls/asktom/ASKTOM.download_file?p_file=6551378329289980701
http://asktom.oracle.com/pls/asktom/ASKTOM.download_file?p_file=6551378329289980701

Output

NAME VALUE
LATCH.enqueue hash chains 1,579
LATCH.row cache objects 1,678
STAT...bytes received via SQL*Net from client 1,935
LATCH.cache buffers chains 3,688
STAT...undo change vector size 4,420
STAT...bytes sent via SQL*Net to client 4,560
STAT...Elapsed Time 6,900
STAT...table scan rows gotten 8,002
STAT...redo size 70,944
STAT...session uga memory max 131,036
STAT...session pga memory max 131,072

e Showsthe resources have been consumed — latches and other
stats.

« Remember —latches are not for this session; they are
systemwide. So, if you have other sessions running right now,
you will not be able to see the effects of this session alone on
latches.

24

What about Future Sessions

« Another procedure in DBMS MONITOR
begin
dbms_monitor.client id stat enable('CLIENT1');
end;

e |tenables statistics collection for all client calls with client
Identifier CLIENT1

* You set the client identifier by
begin
dbms_session.set identifier('CLIENT1');
end;

25

Recording of Stats

* The stats are exposed through VSCLIENT STATS
SQL> desc v$client stats

Name Null? Type

CLIENT IDENTIFIER VARCHAR2 (64)
STAT_ID NUMBER

STAT _NAME VARCHAR2 (64)
VALUE NUMBER

* The stats are aggregated, i.e. all the stats are for a
specific client_identifier; not individual sessions

 Asubset of the stats: not all

26

VSCLIENT_STATS

SQL> select stat name, value
2 from v$client stats
3 where client identifier = "CLIENT1';

STAT NAME VALUE
user calls 4
DB time 2614
DB CPU 4000
parse count (total) 5
application wait time Only 27 stats were 0

27 rows selected.

27

Other Stats Collection

* On Service Name and/or Module Name and Actions
* Here we want to capture sessions starting with
begin
dbms monitor.serv mod act stat enable (
service name => 'APP',
module name => "SQL*Plus’,
action name => 'UPDATE'

); Default is all
end; actions

28

Checking Stats Collection

 To find out which type of aggregation is enabled
SQL> desc DBA_ENABLED AGGREGATIONS

Name Null? Type

AGGREGATION TYPE VARCHAR2(21)
PRIMARY_ID VARCHAR2(64)
QUALIFIER ID1 VARCHAR2 (48)

QUALIFIER ID2 VARCHAR2(32)

Other Sessions

« How do you start measuring when the session is not yet
connected?

— When the stats on individual sessions is desirable
— When the client id, service, etc. are not alterable

« BYOT - Build your own tool

— Create a post-login trigger to write the stats at the
beginning of a session to a table

— Write the values at the end of the session using a pre-
logoff trigger

— Measure the resource usage(the difference)
* Download the scripts to build the complete tool from my

blog.

— http://arup.blogspot.com/2010/09/other-day-i-was-putting-together-
my.html

30

Inference from Resource Usage

Watch out for stats that increase with load

Redo size
 More the redo, more time for I/O and redo latches

Session Logical Reads
* More I/O, indicates more buffers
* More inter-instance locking, messaging
« DW environment: more buffer flush

Cache Buffer Chain Latch
« More latching <@ more CPU usage

If these stats and latches are high, the application will
scale negatively

If you test in a small environment, you must measure it to
test its scalability on a much bigger system.

31

Putting it all Together

Profile Components

— 10046 Tracing

— Combining Traces to a Single File

— Getting the time spent at different components
— Gather Resource Usage

Strategy

— Capture all the profile components

— Make changes to your app

— Capture all the profile components

Decision

— Better, worse?

— How much?

— Decide on the next course of action — the scientific way.

32

Thank You!
Questions?

Email: arup@jproligence.com
Blog: arup@blogspot.com

33

