
Arup Nanda
Starwood Hotels

Why Analyze
• “The Database is Slow”!

– Storage, CPU, memory, runqueues all affect the
performance

– Know what specifically is causing them to be slow

• To build a profile of the application

• To check scalability

– You have developed against non-RAC

• Will it scale up in RAC?

– Currently it runs with 100 users

• What will happen if we have 1000?

• Effective Tuning

– take a baseline before some tuning exercise

– re-measure to see if the tuning was effective

– check the resource usage of applications

2

What to Measure

• Timing of Events

– An Oracle session is in any of these three states

• Doing something useful (consuming CPU) U

• Waiting for some resource (a block from disk, a latch) W

• Idle (Waiting for some work from the user) I

– Total Time = U+W+I

– Accurately measure each component

• Resource Usage

– Latches, Locks

– Redo, Undo

– Logical I/O

3

Inter-instance Round Trip Times

4

process for block

xtfr + n/w latency

processing msg

process block

send

xtfr + n/w latency

wait for block

receive block

Requesting Instance Receiving InstanceNetwork
ro

u
n

d
-t

ri
p
 t

im
e

How to Get the Times

• You can get these times by examining the session in real

time

• There are several issues

– You should be watching in real time

– You will miss the times when these events are past

– How will you know the sessionID in advance?

• Other Option – Tracing

• There is an event called 10046 which allows you to

enable tracing in sessions

5

Enabling Trace

• SQL Trace can be enabled by

–

• You can set the event at the session level so that it can

capture the wait events.

• It produces a trace file similar to sql_trace, but with

extended trace data

– With information on how much time was spent where

• It creates a trace file in the user_dump_dir

– In 11g, the udump dir is inside the diag structure

6

Different Session

• To set SQL Trace in a different session

• To set 10046 Trace in a different session:

– The same effect as

7

DBM_MONITOR

8

• From 10g onwards, you can enable it any other session

by:

To capture wait

events

To capture bind

variables

Analyzing
• Tracefiles are not quite readable

• To analyze the tracefile (SQL Trace or
the 10046 Trace)

– A tool called tkprof

• Other Analyzers

– Trace Analyzer (downloadable from
MetaLink)

– Third party analyzers

• Hotsos Profiler

• Trivadis TVD$XSTAT analyzer

9

Trace Analyzer

• A much better tool to analyze trace files.

• Refer to MetaLink Doc 224270.1 for download and

instructions on use

• A small zip file, with bunch of directories

• Connect as SYS and run tacreate.sql to create the Trace

Analyzer schema (TRCANLZR)

• Run it

10

Output

11

These files are produced in

the local directory

Trace Analyzer

12

• It generates

– The log file of the run. Scan for errors.

– The tkprof output of the trace file

– The analysis in text format

– The analysis in html format

The Connection Pool Effect

• Most applications use connection pool

• A “pool” of connections connected to the database

• When the demand on the connection from the pool

grows, the pool creates new database sessions

• When the demand lessens, the sessions are

disconnected

• The SID is not known

13

C
o

n
n

ec
ti

o
n

 P
o

o
l

Session1

Session2

Session3

DB

Enabling Tracing in Future Sessions

14

• Service Names start tracing when any session

connected with that service name will be traced

• This will trace any session connected with service_name

APP

• Even future sessions!

Warning: This is case
sensitive; so “app”
and “APP” are
different.

What’s Special About RAC

• Multiple Instances multiple hosts

• The tracefiles are on different hosts

• Application connect through a connection

pool

15

C
o

n
n

ec
ti

o
n

 P
o

o
l

Node1

Node2

Session1

Session2

Session3

Tracefile
generated

here

Tracefile
generated

here

Multiple Tracefiles

• Tracefiles are generated for each Oracle session

• So, a single user’s action can potentially go to many

sessions many tracefiles

• Workaround: create only one session in the connection

pool

16

C
o

n
n

ec
ti

o
n

 P
o

o
l

Node1

Node2

Session1

All tracefile
generated

here

Mixed Activities

• But that does not solve the problem

• The single Oracle session will service activities of many

users

• So the tracefile will have activities of all users; not just

the user you are interested in.

17

C
o

n
n

ec
ti

o
n

 P
o

o
l

Node1

Node2

Session1

A single tracefile is
generated here for

all users
User A

User B

Consolidation of Tracefiles

• The trcsess utility comes handy in that case

– It combines all tracefiles into one!

– It creates the tracefile alltraces.trc from all the tracefiles in

that directory where activities by all sessions connected

with the app service

• Now you can treat this new tracefile as a regular

tracefile.

18

TRCSESS
• The utility has many options

19

Other Profiles

• So far we talked about timings of various activities

• Applications consume resources

– Buffers (consistent gets)

• Which in turn drives the I/O up

– Latches (cache buffer chains, library cache, etc.)

– Locks

– CPU

– Redo Generation

• All these resources affect the scalability of the

applications

– Especially in RAC

• You need to measure these resource stats as well

20

Scalability

21

Number of Sessions

R
es

p
o

n
se

 T
im

e

Perfectly scalable

Many develop apps
against a database
running on their laptops;
deem the performance
acceptable and assume
that the performance will
be similar in a multi-user
system!

Source of Resource Stats

• The best source is V$SESSTAT

• Take measurement before and after the application run

• Measure the difference; it’s the resource utilized

22

Runstats Package

• Tom Kyte has an excellent package that can automate

this for you.

– http://asktom.oracle.com/pls/asktom/ASKTOM.download_fi

le?p_file=6551378329289980701

• This allows you to build a test harness

2. Run the application

4. Run the application (changed)

• It shows the difference between the two runs for latches

and statistics

23

http://asktom.oracle.com/pls/asktom/ASKTOM.download_file?p_file=6551378329289980701
http://asktom.oracle.com/pls/asktom/ASKTOM.download_file?p_file=6551378329289980701

Output

• Shows the resources have been consumed – latches and other
stats.

• Remember –latches are not for this session; they are
systemwide. So, if you have other sessions running right now,
you will not be able to see the effects of this session alone on
latches.

24

What about Future Sessions

• Another procedure in DBMS_MONITOR

• It enables statistics collection for all client calls with client

identifier CLIENT1

• You set the client identifier by

25

Recording of Stats

• The stats are exposed through V$CLIENT_STATS

• The stats are aggregated, i.e. all the stats are for a

specific client_identifier; not individual sessions

• A subset of the stats; not all

26

V$CLIENT_STATS

27

Only 27 stats were
captured; not all.

Other Stats Collection

• On Service Name and/or Module Name and Actions

• Here we want to capture sessions starting with

28

Default is all
actions

Checking Stats Collection

• To find out which type of aggregation is enabled

29

Other Sessions
• How do you start measuring when the session is not yet

connected?

– When the stats on individual sessions is desirable

– When the client id, service, etc. are not alterable

• BYOT - Build your own tool

– Create a post-login trigger to write the stats at the
beginning of a session to a table

– Write the values at the end of the session using a pre-
logoff trigger

– Measure the resource usage(the difference)

• Download the scripts to build the complete tool from my
blog.
– http://arup.blogspot.com/2010/09/other-day-i-was-putting-together-

my.html

30

Inference from Resource Usage

• Watch out for stats that increase with load

– Redo size

• More the redo, more time for I/O and redo latches

– Session Logical Reads

• More I/O, indicates more buffers

• More inter-instance locking, messaging

• DW environment: more buffer flush

– Cache Buffer Chain Latch

• More latching more CPU usage

– If these stats and latches are high, the application will

scale negatively

– If you test in a small environment, you must measure it to

test its scalability on a much bigger system.

31

Putting it all Together
• Profile Components

– 10046 Tracing

– Combining Traces to a Single File

– Getting the time spent at different components

– Gather Resource Usage

• Strategy

– Capture all the profile components

– Make changes to your app

– Capture all the profile components

• Decision

– Better, worse?

– How much?

– Decide on the next course of action – the scientific way.

32

Thank You!

Questions?
Email: arup@proligence.com

Blog: arup@blogspot.com

33

