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Why Analyze

« “The Database is Slow”!

— Storage, CPU, memory, runqueues all affect the
performance

— Know what specifically is causing them to be slow
« To build a profile of the application
« To check scalability

— You have developed against non-RAC
« Willit scale up in RAC?

— Currently it runs with 100 users
« What will happen if we have 10007

 Effective Tuning
— take a baseline before some tuning exercise
— re-measure to see if the tuning was effective
— check the resource usage of applications



What to Measure

* Timing of Events
— An Oracle session is in any of these three states
« Doing something useful (consuming CPU) U
« Waiting for some resource (a block from disk, a latch) W
« ldle (Waiting for some work from the user) I
— Total Time = U+W+I
— Accurately measure each component
 Resource Usage
— Latches, Locks
— Redo, Undo
— Logical 1/0
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How to Get the Times

* You can get these times by examining the session in real
time
select state, seconds in wait, wait time, event
from v$session
where sid = <sessionid>

* There are several issues
— You should be watching in real time
— You will miss the times when these events are past
— How will you know the sessionID in advance?

* Other Option — Tracing

* There is an event called 10046 which allows you to
enable tracing in sessions



Enabling Trace

SQL Trace can be enabled by
— alter session set sql trace = true;

You can set the event at the session level so that it can
capture the wait events.

alter session set events '10046 trace name context
forever, level 12°

It produces a trace file similar to sqgl _trace, but with
extended trace data

— With information on how much time was spent where
It creates a trace file in the user_dump _dir

— In 119, the udump dir is inside the diag structure



Different Session

* To set SQL Trace Iin a different session
dbms_system.set sql trace in session
(<sid>,<serial#>,true);
* To set 10046 Trace Iin a different session:
dbms_system.set ev (<sid>,<ser#>,10046,<level#>,null)

— The same effect as

alter session set events '10046 trace name context
forever, level <level#>'



o MONITOR

DBM_MONITOR

 From 10g onwards, you can enable it any other session

by:
begin
dbms monitor.session trace enable (
session 1id => 131,
serial_num => 5879, To capture wait
waits => true events
binds => true
) . To capture bind
g variables
end;
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Analyzing
« Tracefiles are not quite readable

« To analyze the tracefile (SQL Trace or
the 10046 Trace)
— Atool called tkprof

# tkprof D111D1 ora 9204.trc
D111D1 ora 9204.out
explain=arup/arup waits=yes
Sys=no

* Other Analyzers

— Trace Analyzer (downloadable from
MetaLink)
— Third party analyzers
« Hotsos Profiler
 Trivadis TVD$XSTAT analyzer

EXEC
#2:c=3000,€e=56090,p=0,Ccr=0,
ep=1,0g=4,plh=2853959010, t:
4696890449895

FETCH
#2:c=0,e=109,p=0,cr=4,cu=0,
og=4,plh=2853959010, tim=12/
890450092STAT #2 id=1 cnt=:
obj=18 op="TABLE ACCESS BY
(cr=4 pr=0 pw=0 time=0 us
card=1)"

STAT #2 id=2 cnt=1 pid=1 pc
op="INDEX RANGE SCAN I OBIJ:
0 time=0 us cost=3 size=0 ¢
CLOSE
#2:c=0,e=41500,dep=1, type-=:
91640



Trace Analyzer

A much better tool to analyze trace files.

Refer to MetaLink Doc 224270.1 for download and
Instructions on use

A small zip file, with bunch of directories

Connect as SYS and run tacreate.sql to create the Trace
Analyzer schema (TRCANLZR)

Run it

cd trca/run

sqlplus trcanlzr/trcanlzr

@trcanlzr <tracefile name in udump dir>
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Output

Value passed to trcanlzr.sql:
TRACE_FILENAME: D111D1 ora 9205.trc
. analyzing D111D1 ora 9205.trc

Trace Analyzer completed.
Review first trcanlzr error.log file for possible fatal errors.
Review next trcanlzr 22881.log for parsing messages and totals.

. copying now generated files into local directory
TKPROF: Release 11.1.0.7.0 - Production on Wed Oct 28 11:45:05 2009
Copyright (c) 1982, 2007, Oracle. All rights reserved.

adding: trcanlzr 22881 c.html (deflated 90%)

adding: trcanlzr 22881 c.log (deflated 82%
adding: trcanlzr 22881 c.txt (deflated 84%

agging: ’crcanillzr:228817{ka(0(}c scciefl?jted/%S 5) These files are produced in
adding: trcanlzr error.log (deflated 72% i
test ofgtrcanlzr_2§881.zip (§K the local directory

... trcanlzr 22881.zip has been created

TRCANLZR completed.
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Trace Analyzer

* [tgenerates
— The log file of the run. Scan for errors.
— The tkprof output of the trace file
— The analysis in text format
— The analysis in html format

Trace Analyzer 11.3.0.2 Report:

011101 _ora 9205.trc (187834 bytes)

Iotal Trace Response Time: 1647.264 secs.

20089-0CT-28 11:15:00.603 (start of first db cell in trace).
2009-0CT-28 11:42:27.8686 (end of last db call in trace).
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The Connection Pool Effect

* Most applications use connection pool
« A"pool” of connections connected to the database

 Whenthe demand on the connection from the pool
grows, the pool creates new database sessions

« Whenthe demand lessens, the sessions are
disconnected

« The SID is not known
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Enabling Tracing in Future Sessions

« Service Names start tracing when any session
connected with that service name will be traced
begin
dbms monitor.serv mod act trace enable (
service name => 'APP’,
action name => dbms™wgnitor.all actions,

Wélts => true, Warning: This is case
binds => true sensitive; so “app”
)3 and “APP” are

different.

end;

« This will trace any session connected with service_name
APP

 Even future sessions!
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What's Special About RAC

« Multiple Instances <@ multiple hosts
 The tracefiles are on different hosts

« Application connect through a connection
pool

Connect.nn Pool

Tracefile
generated
here

Tracefile
generated
here
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Multiple Tracefiles

Tracefiles are generated for each Oracle session

So, a single user’s action can potentially go to many
sessions <@ many tracefiles

Workaround: create only one session in the connection
pool

All tracefile
generated

— .1
dEddIVIIa

Connect.on Pool
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Mixed Activities

« But that does not solve the problem

« The single Oracle session will service activities of many
users

« So the tracefile will have activities of all users; not just
the user you are interested In.

A single tracefileis
generated here for
allusers

Sessionl

Connection Pcol
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Consolidation of Tracefiles

* The trcsess utility comes handy in that case
— It combines all tracefiles into one!
trcsess output=alltraces.trc service=app *.trc

— It creates the tracefile alltraces.trc from all the tracefiles in
that directory where activities by all sessions connected
with the app service

* Now you can treat this new tracefile as a regular
tracefile.

$ tkprof alltraces.trc alltraces.out sys=no ..
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TRCSESS

« The utility has many options

trcsess [output=<output file name >]

[ session=<session ID>] [clientid=<clientid>]

[ service=<service name>] [action=<action name>]
'module=<module name>] <trace file names>

output=<output file name> output destination default
being standard output.

session=<session Id> session to be traced.
Session id is a combination of SID and Serial# e.g. 8.13.

clientid=<clientid> clientid to be traced.
service=<service name> service to be traced.
action=<action name> action to be traced.
module=<module name> module to be traced.
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Other Profiles

So far we talked about timings of various activities

« Applications consume resources

— Buffers (consistent gets)
« Whichin turn drives the I1/O up

— Latches (cache buffer chains, library cache, etc.)
— Locks

— CPU

— Redo Generation

« Allthese resources affect the scalability of the

applications
— Especially in RAC
You need to measure these resource stats as well
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Source of Resource Stats

 The best source is VISESSTAT

select name, value
from v$sesstat s, v$statname n
where n.statistic# = s.statistic#

and
n.name in (
'CPU used by this session’,

"Yedo sizef

)

and sid = 149;
« Take measurement before and after the application run
« Measure the difference; it's the resource utilized
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Runstats Package

« Tom Kyte has an excellent package that can automate
this for you.

— http://asktom.oracle.com/pls/asktom/ASKTOM.download fi

le?p_file=6551378329289980701

« This allows you to build a test harness
1. SQL> exec runStats pkg.rs start;

2. Run the application

3. SQL> exec runStats pkg.rs middle;
4. Run the application (changed)

5. SOQL> exec runStats pkg.rs stop;

* |tshows the difference between the two runs for latches
and statistics
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http://asktom.oracle.com/pls/asktom/ASKTOM.download_file?p_file=6551378329289980701
http://asktom.oracle.com/pls/asktom/ASKTOM.download_file?p_file=6551378329289980701

Output

NAME VALUE
LATCH.enqueue hash chains 1,579
LATCH.row cache objects 1,678
STAT...bytes received via SQL*Net from client 1,935
LATCH.cache buffers chains 3,688
STAT...undo change vector size 4,420
STAT...bytes sent via SQL*Net to client 4,560
STAT...Elapsed Time 6,900
STAT...table scan rows gotten 8,002
STAT...redo size 70,944
STAT...session uga memory max 131,036
STAT...session pga memory max 131,072

e Showsthe resources have been consumed — latches and other
stats.

« Remember —latches are not for this session; they are
systemwide. So, if you have other sessions running right now,
you will not be able to see the effects of this session alone on
latches.
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What about Future Sessions

« Another procedure in DBMS MONITOR
begin
dbms_monitor.client id stat enable('CLIENT1');
end;

e |tenables statistics collection for all client calls with client
Identifier CLIENT1

* You set the client identifier by
begin
dbms_session.set identifier('CLIENT1');
end;
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Recording of Stats

* The stats are exposed through VSCLIENT STATS
SQL> desc v$client stats

Name Null? Type

CLIENT IDENTIFIER VARCHAR2 (64)
STAT_ID NUMBER

STAT _NAME VARCHAR2 (64)
VALUE NUMBER

* The stats are aggregated, i.e. all the stats are for a
specific client_identifier; not individual sessions

 Asubset of the stats: not all

26



VSCLIENT_STATS

SQL> select stat name, value
2 from v$client stats
3 where client identifier = "CLIENT1';

STAT NAME VALUE
user calls 4
DB time 2614
DB CPU 4000
parse count (total) 5
application wait time Only 27 stats were 0

27 rows selected.
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Other Stats Collection

* On Service Name and/or Module Name and Actions
* Here we want to capture sessions starting with
begin
dbms monitor.serv mod act stat enable (
service name => 'APP',
module name => "SQL*Plus’,
action name => 'UPDATE'

); Default is all
end; actions
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Checking Stats Collection

 To find out which type of aggregation is enabled
SQL> desc DBA_ENABLED AGGREGATIONS

Name Null? Type

AGGREGATION TYPE VARCHAR2(21)
PRIMARY_ID VARCHAR2(64)
QUALIFIER ID1 VARCHAR2 (48)

QUALIFIER ID2 VARCHAR2(32)



Other Sessions

« How do you start measuring when the session is not yet
connected?

— When the stats on individual sessions is desirable
— When the client id, service, etc. are not alterable

« BYOT - Build your own tool

— Create a post-login trigger to write the stats at the
beginning of a session to a table

— Write the values at the end of the session using a pre-
logoff trigger

— Measure the resource usage(the difference)
* Download the scripts to build the complete tool from my

blog.

— http://arup.blogspot.com/2010/09/other-day-i-was-putting-together-
my.html
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Inference from Resource Usage

Watch out for stats that increase with load

Redo size
 More the redo, more time for I/O and redo latches

Session Logical Reads
* More I/O, indicates more buffers
* More inter-instance locking, messaging
« DW environment: more buffer flush

Cache Buffer Chain Latch
« More latching <@ more CPU usage

If these stats and latches are high, the application will
scale negatively

If you test in a small environment, you must measure it to
test its scalability on a much bigger system.
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Putting it all Together

Profile Components

— 10046 Tracing

— Combining Traces to a Single File

— Getting the time spent at different components
— Gather Resource Usage

Strategy

— Capture all the profile components

— Make changes to your app

— Capture all the profile components

Decision

— Better, worse?

— How much?

— Decide on the next course of action — the scientific way.
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Thank You!
Questions?

Email: arup@jproligence.com
Blog: arup@blogspot.com
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