
Partitioning: What, When, Why & How

By Arup Nanda

Introduction

Partitioning is nothing new in Oracle Databases.
There has been scores of books, articles,
presentations, training sessions and even pages in
Oracle manuals on the partitioning feature. While
being serious sources of information, most of the
texts seem to highlight the usage aspect of the
feature, such as what type of partitioning, how to
create a partitioned table or index and so on. The
success of partitioning lies in the design phase.
Unless you understand why to use a certain type of
partitioning, you may not be able to articulate an
effective strategy. Unfortunately this falls in the gray
area between modeling and DBA, an area probably
seldom visited and often neglected.

In this article, you will learn how to use partitioning
to address common business problems, understand
what is needed to in the design process, how to
choose a specific type of partitioning along with
what parameters affect your design and so on. It is
assumed that you already know the concepts of
partitioning and can get the syntax from manuals.
After reading this, you will be able to address these
questions:

 When to use partitioning features
 Why partition something, to overcome what
challenges

 What type of partitioning scheme to choose
 How to choose a partition key
 Caveats and traps to watch out for

Learning is somewhat easier when illustrated with a
real life scenario. At the end of the article, you will
learn how these design decisions are made with a
complete case study.

When

The partitioning skills require a mixture of Modeling
and DBA skills. Usually you decide on partitioning
right after logical design (in the domain of the
Modelers) and just before physical design (in the
domain of the DBAs). However, this is an iterative
process. Be prepared to go back and change the
logical design if needed to accommodate a better
partitioning strategy. You will see how this is used
in the case study.

A question I get all the time is what types of tables
are to be considered for partitioning, or some
variant of that theme. The answer is in almost all
the cases for large tables. For small tables, the
answer depends. If you plan to take advantage of
partition-wise joins, then small tables will benefit
too.

Why Partition?

The very basic question is ridiculously simple – why
even bother partitioning a table? Traditionally these
two have been the convincing reasons:

EEaassiieerr AAddmmiinniissttrraattiioonn

Smaller chunks are more manageable than a whole
table. For instance, you can rebuild indexes
partition-by-partition, or move tables to a different
tablespaces one partition at a time. Some rare usage
includes data updates. When you update the entire
table, you do not need counters to keep track of
how many rows were updated to commit
frequently. You just update one partition at a time.

PPeerrffoorrmmaannccee

This competes with the ease of administration as a
top reason. When you perform full table scans, you
are actually performing full partition scans. When

© 2008, Arup Nanda and Proligence. For educational purposes only.
Author does not provide any guarantee – implied or explicit - on the
accuracy and exhaustiveness of this material and will not be liable for
any damages as a result of following the advice herein.

you join two tables, Oracle can automatically detect
the data values being on one partition and choose
to join the rows in different partitions of several
tables – a fature called partition-wise join. This
enhances the performance queries significantly.

Other lesser know performance enhancing features
come from reduced latching. Partitioning makes
several segments out of a single table. When the
table is accessed, the segments could potentially be
on multiple cache buffer chains, making fewer
demands on the latch allocation.

HHoott IInnddeexxeess

Consider an index on some sort of sequential
number – a monotonically increasing number. Since
the numbers are added incrementally, a handful of
leaf blocks may experience contention, making the
index hot. Over period of time, the hot portion
moves to a different part of the index. To prevent
this from happening, one option is to create a hash
partitioned index. Note, the table may or may not
be partitioned; but the index could be – that’s the
beauty of hash partitioned index, introduced in
Oracle 10g R2.

Here is an example of how it is created on a table
called RES.

create index IN_RES_01
on RES (RES_ID)
global
partition by hash (RES_ID)
partitions 8

In this example the table RES is un-partitioned;
while index is partitioned. Also, note the use of the
clause “global”. But this table is not partitioned; so
global shouldn’t apply to the index. Actually, it does.
The global clause can also be used on partitioned
indexes which are on unpartitioned tables.

This creates multiple segments for the same index,
forcing index blocks to be spread on many branches
and therefore reducing the concentration of access
on a single area of the index, reducing cache buffer
chain related waits.

Since the index is now partitioned, it can be rebuilt
partition-by-partition:
alter index IN_RES_01 rebuild partition
<PartName>;

It can be moved to a different tablespace, renamed
and so on, as you can with a regularly partitioned
index.

More Important Causes

The previous two causes, while important, are not
the only ones to be considered in designing
partitioning. You have to consider more important
causes.

DDaattaa PPuurrggiinngg

Purging data is a common activity in pretty much
any database. Traditional methods of purge rely on
deleting rows, using the DELETE command. Of
course, TRUNCATE command can be used to
delete the whole table; but purge is hardly ever for
the entire table. DELETEs are very expensive
operations; they generate a large amount of REDO
and UNDO data. To prevent running out of undo
space, you may resort to frequent commits, which
stress the I/O subsystem since it forces a log buffer
flush.
On the other hand, partition drops are practically
free. All you have to do is to issue a ALTER TABLE
TableName DROP PARTITION P1 and the partition
is gone – with minimal undo and redo. The local
indexes need not be rebuilt after the drop; but
global indexes will need to be. From Oracle 9i
onwards, you can use UPDATE GLOBAL INDEXES
clause to automatically update the global indexes
during partition drop.

AArrcchhiivvaall

A part of the purge process may be archival. Before
dropping the data, you may want to store the data
somewhere else. For instance, you are deleting
some sales data for April 2008; but you want to
move them to a different table for future analysis.

The usual approach is issuing insert into
archival table select * from main table
statement. However, INSERT is expensive – it
generates a lot of undo and redo. You can reduce it
somewhat by using the /*+ APPEND */ but you
can’t avoid the massive selection from the table.

This is where the power of partition exchange
comes in. All you do is to convert the partition to a
standalone table. In line with the example shown
above, you will need to create an empty table called
TEMP – the same structure as the SALES table; but
not partitioned. Create all the indexes as well. After
the creation, issue the following:
ALTER TABLE SALES EXCHANGE PARTITION APR08
WITH TABLE TEMP INCLUDING INDEXES
This makes the data in the former partition available
in TEMP and the partition empty. At this time, you
can drop the partition APR08. The table TEMP can
be exchanged with the partition APR08 of an
archival table; or just renamed.

During partition exchange, local indexes need not
be rebuilt. Global indexes will need to be rebuilt;
but can be automatically maintained if the UPDATE
GLOBAL INDEXES clause is given. This is the
fastest, least expensive and the preferred approach
for archival.

MMaatteerriiaalliizzeedd VViieewwss RReeffrreesshheess

You should already be familiar with Materialized
Views, which are results of queries stored as
segments, just like tables. The MV stores the data;
not maintain it. So, it needs to be refreshed from
time to time to make the data current.
Traditionally, the approach to refresh the MV is
calling the procedure REFRESH in the
DBMS_MVIEW package.

There is nothing wrong with the approach; but it
locks the entire MV until the refresh is complete.
Also, the data is inserted using INSERT /*+
APPEND */ statement, which stresses the I/O
subsystem.

Another approach is possible if the MV is
partitioned properly. If done right, only a few

partitions of the MV will need to be refreshed, not
all. For instance, suppose you have an MV for Sales
data partitioned monthly. Most likely the partition
for a previous period is not going to change if you
refresh it, as the base table data won’t have
changed. Most likely only the last month’s partition
needs to be refreshed. However, instead of
refreshing, you can use the Partition Exchange trick.

Fist you create a temp table structurally identical to
the MV but not partitioned, along with indexes, etc.
You populate this temp table with the data from
base tables. Once done, you can issue
alter table MV1 exchange partition SEP08
with table temp update all indexes which
updates the data dictionary to show the new data.
The most time consuming process is building the
temp table, but during the whole time the MV
remains available.

BBaacckkuupp EEffffiicciieennccyy

When a tablespace is made read-only, it does not
change and therefore needs only one backup.
RMAN can skip it in backup if instructed so. It is
particularly useful in DW databases which are quite
large and data is mostly read only. Skipping
tablespaces in backup reduces CPU cycles and disk
space.

A tablespace can be read only when all partitions in
them can be considered unchangeable. Partitioning
allows you to declare something read only. When
that requirement is satisfied, you can make the
tablespace read only by issuing alter tablespace
Y08M09 read only;

DDaattaa TTrraannssffeerr

When you move data from one database to the
other, what are the normal approaches? The
traditional approach is issuing the statement insert
into target select * from source@dblink or
something similar. This approach, while works is
fraught with problems. First, it generates redo and
undo (which can be reduced by the APPEND hint).
Next, a lot of data is transferred across the
network. If you are moving the data from the entire

tablespace, you can use the Transportable
Tablespace approach. First, make the tablespace
read only. Then copy the datafile to the new server.
Finally "Plug in" the file as a new tablespace into the
target database. You can do this even when the
platforms of the databases are different, as well.
For a complete discussion and approach, refer to
my Oracle Magazine article
http://www.oracle.com/technology/oramag/oracle/0
4-sep/o54data.html.

IInnffoorrmmaattiioonn LLiiffeeccyyccllee MMaannaaggeemmeenntt

When data is accessed less frequently, that can be
moved to a slower and cheaper storage, e.g. on
EMC platforms from DMX to Clariion or SATA.
You can do this in two different ways:

(A) Partition Move

First, create a tablespace called, say, ARC_TS on
cheaper disks. Once created, move the partition to
that tablespace using ALTER TABLE TableName
MOVE PARTITION Y07M08 TABLESPACE
ARC_TS. During this process, the users can select
from the partition; but not update it.

(B) ASM Approach

While the tablespace approach is the easiest, it may
not work in some cases where you can’t afford to
have a downtime for updates. If your datafiles are
on ASM, you may employ another approach:

ALTER DISKGROUP
DROP DISK CostlyDisk
ADD DISK CheapDisk;

This operation is completely online; the updates can
continue when this is going on. The performance is
somewhat impacted due to the rebalance operation;
but that may be tolerable if the asm_power_limit is
set to a very low value such as 1.

How to Decide

Now that you learned what normal operations are
possible and enhanced through partitioning, you

should choose the feature that is important to you.
This is the most important part of the process –
understand the objectives clearly. Since there are
multiple objectives, list them in the order of
importance. Here is an example:

 Data Purging
 Data Archival
 Performance
 Improving Backups
 Data Movement
 Materialized View Refreshes
 Ease of Administration
 Information Lifecycle Management

Now that you assigned priorities, you choose the
partitioning approach that allows you to accomplish
the maximum number of objectives. In the process
of design, you might find that some objectives run
counter to the others. In that case, choose the
design that satisfies the higher priority objective, or
more number of objectives.

Case Study

To help understand this design process, let’s see
how decisions are made in real life scenarios. Our
story unfolds in a fictitious large hotel company.
Please note, the company is entirely fictional; any
resemblance to real or perceived entities is purely
coincidental.

BBaacckkggrroouunndd
Guests make reservations for hotel rooms, for one
or more number of nights. These reservations are
always made for future dates, obviously. When
guests check out of the hotel, another table
CHECKOUTS is populated with details. When
guests buy something or spend money such as
order room service or buy a movie, records are
created in a table called TRANSACTIONS. There is
a concept of a folio. A folio is like a file folder for a
guest and all the information on the guests stay goes
in there. When a guest checks in, a record gets
created in the FOLIOS table. This record gets
updated when the guest checks out.

PPaarrttiittiioonn TTyyppee
To understand the design process, let’s eavesdrop
on the conversation between the DBA and the Data
Modeler. Here is a summarized transcript of
questions asked by the DBA and answered by the
Modeler.

Q: How will the tables be purged?
A: Reservations are deleted 3 months after they are
past. They are not deleted when cancelled.
Checkouts are deleted after 18 months.

Based on the above answer, the DBA takes the
preliminary decision. Since the deletion strategy is
based on time, Range Partitioning is the choice with
one partition per month.

PPaarrttiittiioonn CCoolluummnn
Since deletion is based on RES_DT and CK_DT,
those columns were chosen as partitioning key for
the respective tables.

create table reservations (…)
partition by range (res_dt) (
 partition Y08M02 values less than
(to_date('2008-03-01','yyyy-mm-dd')),
 partition PMAX values less than
(MAXVALUE)
)

Here we have chosen a default partition PMAX to
hold rows that go beyond the boundary of the
maximum value.

AAcccceessss PPaatttteerrnnss

Next, we want to know more about how the
partitions are going to be accessed. The DBA’s
question and Modeler’s answer continues.

Q: Will checkout records within last 18 months be
uniformly accessed?
A: No. Data within the most recent 3 months is
heavily accessed; 4-9 months is lightly accessed; 9+
months is rarely accessed.

Based on the above response, we decide to use
Information Lifecycle Management to save storage
cost. Essentially, we plan to somehow place the

most recent 3 months data on highest speed disks
and so on.

AAcccceessss TTyyppeess

To achieve the objectives of the backup efficiency,
we need to know if we can make the tablespace
read only.

Q: Is it possible that data in past months can change
in CHECKOUTS?
A: Yes, to make adjustments.
Q: How likely that it will change?
A: Infrequent; but it does happen usually within 3
months. 3+ months: very rare.
Q: How about Reservations?
A: They can change any time for the future; but they
don’t change for past records.

This is a little tricky for us. Essentially, none of the
records of CHECKOUTS can be made read-only,
we can’t make the tablespace read only as well. This
affects the Information Lifecycle Management
decision as well. So, we put on our negotiator hat.
We ask the question: what if we make it read only
and if needed we will make it read write? But the
application must be tolerant to the error as a result
of being read-only.

After a few rounds of discussions, we decided on a
common ground – we will keep last three months
of data read write; but make everything else read
only. If needed, we can make it read write, but with
a DBA’s intervention. This decision not only
improves the backup, but helps the ILM objective as
well.

Figure 1 Design: 1st Pass

Design: 1st Pass

Now that we got all the answers, we get down to
the design. Fig 1 shows the first pass of our design
of the tables. The Primary Keys are shown by key
icons, foreign keys by FK and partitioning keys are
shown by the Part icon before the column name.
The portioning keys are placed based on our initial
design.

Design: 2nd Pass

The first pass assumes we partition month-wise.
There is a huge problem. The TRANSACTIONS
table, which has a many-to-one relationship with
FOLIOS table, has a different partitioning key –
TRANS_DT – than its parent – FOLIO_DT. There
is no FOLIO_DT column in the child table. So,
when you join the table, which happens all the time,
you can’t really take advantage of partition-wise
joins. So, what can you do?

The easiest thing to do is to add a column called
FOLIO_DT in the TRANSACTION table. Note,
this completely goes against the principles of
normalization – recording data at only one place.
But this is an example of where puritan design has
to meet the reality head on and you have to make
decisions beyond text book definitions of modeling.
Fig 2 shows the modified design after the second
pass.

Design: 3rd Pass

This solved the partition-wise join problem; but not
others. Purge on CHECKOUTS, FOLIOS and
TRANSACTIONS is based on CK_DT, not
FOLIO_DT. FOLIO_DT is the date of creation of
the record; CK_DT is updated at checkout. The
difference could be months; so, purging can't be
done on FOLIO_DT. We violated our first priority
objective – data purge.

So, we come up with a solution: make CK_DT the
Partitioning Key, since that will be used to purge.
This brought up another problem – the column
CK_DT is not present in all the tables. Well, we
have a solution as well: add CK_DT to other tables.
Again, you saw how we tweaked the model to
accomplish our partitioning objectives. After adding
the column, we made that column the partitioning
key. Fig 3 shows the design after the third pass of
the design process.

This was a key development in the design. Since the
column CK_DT was on all the tables except
RESERVATIONS, we can purge the tables in exactly
same way.

Figure 2 Design 3rd Pass

Design: 4th Pass

While we solved the purging issue, we discovered
some more issues as a result of the tweaked design.

(1) The records of the table FOLIOS are created at

Figure 3 Design: 2nd Pass

check-in but the column CK_DT is updated at
check-out. Since the column value could change, the
record in FOLIOS may move to a different partition
as a result of the update.

 (2) The column CK_DT will not be known at
check-in; so the value will be NULL. This will make
it go to the PMAX partition. Later when the record
is updated, the record will move to the correct
partition.

The second problem is hard to ignore. It implies
that all the records of the tables will always move,
since the guests will checkout some day and the
updates to the column will force row migration.
The first problem is manifestation of the second; so
if we solve the second, the first will automatically
disappear.

So, we made a decision to make CK_DT NOT
NULL; instead it is set to tentative date. Since we
know how many nights the guest will stay, we can
calculate the tentative checkout date and we will
populate that value in the CK_DT. Again, we made
a step against puritanical design principles in favor of
real life solutions.
Our list of problems still has some entries. The
TRANSACTIONS table may potentially have many
rows; so updating CK_DT may impact negatively.
Also, updating the CK_DT later may move a lot of
rows across partitions; affecting performance even
more. So, it may not be a good idea to introduce
CK_DT in the TRANSACTION table.

So, we made a decision to undo the decision we
earlier; we removed CK_DT from
TRANSACTIONS. Rather we partition on the
TRANS_DT, as we decided earlier. For purging, we
did some thinking. The TRANS_DT column value
will always be less than or equal to the CK_DT,
since there will be no transactions after the guest
checks out. So, even though the the partitioning
columns are different, we can safely say that when a
partition is ready for dropping in FOLIOS, it will be
ready in TRANSACTIONS as well. This works out
well for us. This also leaves no room for row

migrations across partitions. Fig 4 shows the design
after the 4th pass.

Figure 4 Design: 4th Pass

Scenario Analysis

One of the most important aspects of designing,
including partitioning is thinking of several scenarios
and how the design will hold up on each. Here we
see different scenarios. The icons convey different
meanings. I means a new row was created, U
means the row was updated and M means the row
was migrated to a different partition.

SScceennaarriioo ##11
Guest makes a reservation on Aug 31st for Sep
30th for one night, so checking out tentatively on
Oct 1st. Every table has an update date column
(UPD_DT) that shows the date of update. He
actually checks out on Oct 2nd.

Records Created:
Table Part Key UPD_DT Partition
RESERVATIONS 09/30 08/31 Y08M09 I

Guest checks in on 9/30
FOLIOS 10/01 09/30 Y08M10 I

Checks out on Oct 2nd:
CHECKOUTS 10/02 10/02 Y08M10 I
TRANSACTIONS 10/02 10/02 Y08M10 I
FOLIOS 10/02 10/02 Y08M10 U

As you can see, all the records were created new.
The only record to ever be updated is that of
FOLIOS. But the record is not migrated from one
partition to another.

Design: 5th Pass

While mulling over the design, we had a new
thought: why not partition RESERVATIONS table
by CK_DT as well? This action will make all the
tables partitioned by the same column and the same
way – the perfect nirvana for purging. When a guest
checks out the reservations records are
meaningless anyway. They can be queried with the
same probability of the checkouts and folios; so it
will be a boon for ILM and backup. Partition-wise
joins will be super efficient, partition pruning
between tables become a real possibility; and, most
important of all, purging of tables will become much
easier since we just have to drop one partition from
each of the tables. So, we reached a decision to add
a column CK_DT to the RESERVATIONS table and
partition on that column. The new design is shown
in Fig 5.

Scenario Analysis

Let’s subject our design to some scenarios. First,
let’s see how the Scenario #1 holds up in this new
design. The guest makes reservation on Aug 31st

for one night on Sep 30th; so checking out
tentatively on Oct 1st. However, instead of checking
out on the intended day, he decided to stay one
more day and checks out on Oct 2nd.

Records Created:
Table Part Key UPD_DT Partition
RESERVATIONS 10/01 08/31 Y08M10 I

Guest checks in on 9/30
FOLIOS 10/01 09/30 Y08M10 I

Checks out on Oct 2nd:
CHECKOUTS 10/02 10/02 Y08M10 I
TRANSACTIONS 10/02 10/02 Y08M10 I
RESERVATIONS 10/02 10/02 Y08M10 U
FOLIOS 10/02 10/02 Y08M10 U

This shows that two tables will be updated; but
there will be no migration across partition
boundaries – so far so good.

SScceennaarriioo ##22

It’s a modification of the Scenario #1. the guest
checks out on Nov 1st, instead of Oct 1st.

Records Created:
Table Part Key UPD_DT Partition
RESERVATIONS 10/01 08/31 Y08M10 I

Guest checks in on 9/30
FOLIOS 10/01 09/30 Y08M10 I

Checks out on Nov 1st:
CHECKOUTS 11/01 11/01 Y08M11 I
TRANSACTIONS 11/01 11/01 Y08M11 I
RESERVATIONS 11/01 11/01 Y08M10 M
FOLIOS 11/01 11/01 Y08M10 M
Consider the case carefully. The design reeks of
two bad ideas in partitioning – row migration; but
how prevalent is it? If you examine the scenario,
you will notice that the only case the row migration
will occur is when rows change months. When
checkout date was changed from 10/1 to 10/2, the
record was updated; but the row didn’t have to
move as it was still in the Oct 08 partition. The row
migration occurred in the second case where the
month changed from October to November. How
many times does that happen? Perhaps not too
many; so this design is quite viable.

Here you saw an example of how an iterative design
approach was employed to get the best model for
partitioning. In the process, we challenged some of
the well established rules of relational design and

Figure 5 Design: 5th Pass

made modifications to the logical design. This is all
perfectly acceptable in a real life scenario and is vital
for a resilient and effective design.

New Column for Partitioning

In the design, we added a column CK_DT to many
tables. How do we populate it? There are two
sources for populating it – applications and triggers.
If the design is new and the coding has not begun,
the apps can easily do it and in many cases
preferred as it is guaranteed. If this is an established
app, then it has to be modified to place the logic. In
that case, the trigger approach may be easier.

Non-Range Cases

So far we have discussed only range partitioning
cases. Let’s consider some other cases as well.
Consider the GUESTS table, which is somewhat
different. It has:

 500 million+ records
 No purge requirement
 No logical grouping of data. GUEST_ID is just a
meaningless number

 All dependent tables are accessed concurrently,
e.g. GUESTS and ADDRESSES are joined by
GUEST_ID

So, No meaningful range partitions are possible for
this table. This is a candidate for hash partitions, on
GUEST_ID. We choose the number of partitions in
such a way that each partition holds about 2 million
records. The number of partitions must be a power
of 2. So, we chose 256 as the number of partition.

All dependent tables like ADDRESSES were also
hash partitioned on (guest_id), same as the GUESTS
table. This type of partitioning allows great flexibility
in maintenance.

HHootteellss TTaabblleess

The table HOTELS holds the names of the hotels
Several dependent tables – DESCRIPTIONS,
AMENITIES, etc. – are all joined to HOTELS by
HOTEL_ID column. Since HOTEL_ID varies from 1

to 500, could this be a candidate for Partitioning by
LIST?

To answer the question, let’s see the requirements
for these tables. These are:

 Very small
 Do not have any regular purging need
 Mostly static; akin to reference data
 Not to be made read only; since programs
update them regularly.

So, we took a decision: not to partition these tables.

Tablespace Decisions

The partitions of a table can go to either individual
tablespaces or all to the same tablespace. How do
you decide what option to choose?

Too many tablespaces means too many datafiles,
which will result in longer checkpoints. On the
other hand, the individual tablespaces option has
other benefits.

 It affords the flexibility of the tablespaces being
named in line with partitions, e.g. tablespace
RES0809 holds partition Y08M09 of
RESERVATIONS table. This makes it easy to
make the tablespace READ ONLY, as soon as
you know the partition data will not be changed.

 Easy to backup – backup only once, since data
will not change

 Easy to ILM, since you know the partitions
 Allows the datafiles to be moved to lower cost
disks
ALTER DATABASE DATAFILE '/high_cost/…'
RENAME TO '/low_cost/…';

Neither is a perfect solution. So, we proposed a
middle of the way solution. We created a
tablespace for each period, e.g. TS0809 for Sep '08.
This tablespace contains partition Y08M09 for all
the tables – RESERVATIONS, CHECKOUTS,
TRANSACTIONS and soon. This reduced the
number of tablespaces considerably.

Partitions of the same period for all the tables are
usually marked read only. This makes the possible

to make a tablespace read only, which helps backup,
ILM and other objectives. If this conjecture that the
tablespace can be read only is not true, then this
approach will fail.

Figure 6 Tablespace Design

Figure 6 shows the final tablespace design. Here we
have defined just three tablespaces TS0807, TS0808
and TS0809. The tables – RESERVATIONS,
CHECKOUTS and TRANSACTIONS – have been
partitioned exactly in the same manner – monthly
partitions on some date. The partitions are named
Y08M07, Y08M08 and Y08M09 for July, August and
September data respectively. All these partitions of
a particular period for all tables go to the
corresponding tablespaces. For instance, tablespace
TS0809 holds the RESERVATION table’s partition
Y08M09, CHECKOUTS table’s partition Y08M09
and TRANSACTION table’s partition Y08M09.
Suppose the current month is Sep 08. this means
that the files for tablespace TS0809 will be on the
fastest disk; TS0808 will be on medium disk and the
third one will be on the slowest disk. This will save
substantially on the storage cost.

Summary

PPaarrttiittiioonniinngg TTiippss
1. Understand clearly all benefits and use cases of

partitioning, especially the ones that will or will
not apply in your specific case.

2. List the objectives of your design – why you are
partitioning – in the order of priority.

3. If possible design the same partitioning scheme
for all related tables, which helps purging, ILM,
backup objectives.

4. To accomplish the above objective, don’t
hesitate to introduce new columns

5. Try to make all indexes local, i.e. partition key is
part of the index. This help management easier
and the database more available.

TTiippss ffoorr CChhoooossiinngg PPaarrtt KKeeyy
1. If a column is updateable, it does not

automatically mean it is not good for
partitioning.

2. If partition ranges are wide enough, row
movement across partitions is less likely

3. Row movement may not be that terrible,
compared to the benefits of partitioning in
general; so don’t discard a partitioning scheme
just because row movement is possible

Oracle 11g Enhancements

Oracle Database 11g introduced many
enhancements in the area of partitioning. Of several
enhancements, two stand out as particularly worthy
from a design perspective.

VViirrttuuaall CCoolluummnn PPaarrttiittiioonniinngg

It allows you to define partitioning on a column that
is virtual to the table, i.e. it is not stored in the table
itself. Its value is computed every time it is accessed.
You can define this column as a partitioning column.
This could be very useful in some cases where a
good partitioning column does not mean you have
to make a schema modification.

RReeffeerreennccee PPaarrttiittiioonniinngg

This feature allows you to define the same
partitioning strategy on the child tables as the
parent table, even if the columns are not present.
For instance, in the case study you had to add the
CK_DT to all the tables. In 11g, you didn’t have to.
By defining a range partitioning as “by reference”,
you allow Oracle to create the same partitions on a
table as they are on parent table. This avoids
unnecessary schema changes.

Thank you from Proligence.

