
This paper is solely based on my independent research into the composition of the listener 
log and not an extract from any other source, including Oracle manuals. While I have made
every attempt to derive and present accurate information, there is no guarantee of its 
accuracy if the format of listener log will be changed in some Oracle version, or has not bee
changed already for some platforms. Therefore, I’m not making any kind of statement 
guaranteeing the accuracy of the findings on this paper.  
The results and output are from an actual production database infrastructure; however, the
identifying information, such as IP Address, Host Name, usernames, and so on, have been 
masked to hide their identities. If it resembles any actual infrastructure, it is purely 
coincidental. 

select 
   parse_listener_log_line(connect_string,'SERVICE_NAME') SN, 
   parse_listener_log_line(protocol_info,'HOST') host, 
   count(1) cnt 
from listener_log 
where 
   parse_listener_log_line(connect_string,'HOST') = '__jdbc__' 
group by 
   parse_listener_log_line(connect_string,'SERVICE_NAME'), 
   parse_listener_log_line(protocol_info,'HOST'); 

SN              HOST                                               CNT 
--------------- --------------------------------------------- -------- 
                10.14.105.19                                        80 
                10.20.191.76                                       798 
                10.20.191.77                                       150 
                10.20.191.78                                       160 
                10.20.191.80                                       396 
                10.20.191.82                                        99 

Mining Information from the Listener Log - Part 3
by Arup Nanda

Part 1  |  Part 2  |  Part 3 

In the first two parts of this article series, you have learned how to build a tool to mine information from the 
listener log, which contains valuable information, yet is usually ignored in database analysis. If you haven’t 
already done so, please take a take a moment to go through part 1 and part 2 of this series. (Part 1 contains th
description of this tool.) In this third, and last article of the series, you will see how to extract enhanced bits o
information from the listener log and also how to tie it in with security analysis.

Standard Disclaimer

JDBC Connections

Earlier, we saw that the HOST parameter in the CONNECT_STRING shows __jdbc__ when the client 
connects to the database using the JDBC thin driver. In this case, the real host name is shown in the HOST 
parameter in the PROTOCOL_INFO field. Using that knowledge, we can pull up a report on what service 
name is used from which client. The following query accomplishes this:

The output is:

Page 1 of 11DBAzine.com:Mining Information from the Listener Log - Part 3

9/16/2008http://www.dbazine.com/oracle/or-articles/nanda16/



                10.20.191.91                                       274 
                10.20.191.93                                    43,839 
                10.20.194.57                                        96 
                10.20.199.60                                         1 
                10.20.199.67                                         6 
                10.14.104.105                                        6 
                10.14.104.122                                        8 
                10.14.104.203                                        9 
                10.14.105.105                                        2 
                10.20.214.170                                   15,869 
OMT             10.20.191.60                                        84 
OMT             10.20.191.80                                        72 
SLC             10.14.104.99                                        81 
SLC             10.20.191.209                                       15 
SLC             10.20.214.170                                  260,928 
omt             10.20.191.60                                         1 
PNAT            10.14.104.105                                       18 
PNAT            10.20.191.116                                    1,056 
PNAT            10.20.191.117                                      200 
PCAT            10.20.191.60                                       325 
PCAT            10.20.191.80                                       572 
ADHOC           10.20.191.91                                       325 
ADHOC           10.23.35.233                                         3 
PROLO           10.23.35.37                                          4 
PROLO           10.20.191.78                                       114 
PROLO           10.20.191.82                                       178 
PROLO           10.14.105.175                                       35 
adhoc           10.14.32.8                                          18 
adhoc           10.14.32.34                                         66 
adhoc           10.14.32.76                                          9 
adhoc           10.20.170.35                                       236 
PROMSG          10.14.32.22                                         16 
PROMSG          10.20.191.76                                     1,688 
PROMSG          10.20.191.80                                         2 
PROMSG          10.20.191.88                                     1,263 
PROMSG          10.20.191.91                                       306 
PROSVC          10.20.191.76                                       120 
PROSVC          10.20.191.80                                       117 
PROSVC          10.20.191.88                                       142 
PROSVC          10.20.191.89                                       166 
PROSVC          10.20.191.90                                       150 
PROSVC          10.20.191.91                                       244 
PROSVC          10.20.191.93                                     1,971 
proprd          10.20.194.57                                       128 
PROSVC          10.20.191.82                                         1 
PROSVC          10.20.191.91                                         5 
BOOKING         10.20.210.21                                       649 
BOOKING         10.20.210.23                                     1,546 
PROPEDIA        10.20.195.20                                         8 
PROCOMM         10.20.191.76                                       326 
PROCOMM         10.20.191.80                                       367 
PROCOMM         10.14.105.101                                    1,595 
PROSRCH         10.23.35.6                                           2 
PROSRCH         10.20.191.48                                       236 
PROSRCH         10.20.191.62                                        61 
PROSRCH         10.20.191.63                                         5 
PROSRCH         10.20.191.86                                         9 
PROSRCH         10.20.191.87                                         8 
PROSRCH         10.23.35.169                                         3 
PROSRCH         10.23.35.233                                         6 
PROSRCH         10.14.104.251                                       42 
PROSRCH         10.20.191.125                                    7,166 
proprd1         10.20.191.91                                         1 
proprd1         10.20.194.57                                         8 
PROMEET         10.14.32.67                                          3 
PROMEET         10.14.104.58                                       116 
PROMEET         10.20.218.193                                      424 
PROMEET         10.20.218.194                                      433 
RESPONSE        10.20.191.78                                        76 
RESPONSE        10.20.191.82                                       105 
response        10.20.191.78                                       475 
PROPRD_ADHOC    10.14.105.175                                        1 

Now it’s time to match up client IP addresses to make sure they are correctly pointing to the right service 

Page 2 of 11DBAzine.com:Mining Information from the Listener Log - Part 3

9/16/2008http://www.dbazine.com/oracle/or-articles/nanda16/



select 
   parse_listener_log_line(connect_string,'SID') SID, 
   parse_listener_log_line(connect_string,'SERVICE_NAME') SN, 
   parse_listener_log_line(protocol_info,'HOST') host, 
   count(1) cnt 
from listener_log 
where 
   parse_listener_log_line(connect_string,'HOST') = '__jdbc__' 
group by 
   parse_listener_log_line(connect_string,'SID'), 
   parse_listener_log_line(connect_string,'SERVICE_NAME'), 
   parse_listener_log_line(protocol_info,'HOST') 

SID        SN              HOST                      CNT 
---------- --------------- -------------------- -------- 
           OMT             10.20.191.60               84 
           OMT             10.20.191.80               72 
           SLC             10.14.104.99               81 
           SLC             10.20.191.209              15 
           SLC             10.20.214.170         261,029 
           omt             10.20.191.60                1 
           PNAT            10.14.104.105              18 
           PNAT            10.20.191.116           1,056 
           PNAT            10.20.191.117             200 
           PCAT            10.20.191.60              325 
           PCAT            10.20.191.80              572 
           ADHOC           10.20.191.91              325 
           ADHOC           10.23.35.233                3 
           PROLO           10.23.35.37                 4 
           PROLO           10.20.191.78              114 
           PROLO           10.20.191.82              178 
           PROLO           10.14.105.175              35 
           adhoc           10.14.32.8                 18 
           adhoc           10.14.32.34                66 
           adhoc           10.14.32.76                 9 
           adhoc           10.20.170.35              236 
           PROMSG          10.14.32.22                16 
           PROMSG          10.20.191.76            1,688 
           PROMSG          10.20.191.80                2 
           PROMSG          10.20.191.88            1,263 
           PROMSG          10.20.191.91              306 
           PROSVC          10.20.191.76              120 
           PROSVC          10.20.191.80              117 
           PROSVC          10.20.191.88              142 
           PROSVC          10.20.191.89              166 
           PROSVC          10.20.191.90              150 
           PROSVC          10.20.191.91              244 
           PROSVC          10.20.191.93            1,972 

name. Some client IP addresses use multiple service names since they run multiple applications. While there 
no way to differentiate between applications, we can at least eliminate the possibility that an appserver uses a
wrong service name.

SID or Service Name Breakup

Now that you have seen how clients use both service names and SIDs while connecting, a consolidated report
will help you to understand how clients connect, and will help us fix two potential issues — clients using SIDs
instead of service names, and using wrong service names. We will use this information for JDBC thin clients 
only, because that’s where most of our applications are. 

You can use this query to see the breakup of the SID/Service Names:

The output is:

Page 3 of 11DBAzine.com:Mining Information from the Listener Log - Part 3

9/16/2008http://www.dbazine.com/oracle/or-articles/nanda16/



           proprd          10.20.194.57              128 
           PROSVC          10.20.191.82                1 
           PROSVC          10.20.191.91                5 
           BOOKING         10.20.210.21              649 
           BOOKING         10.20.210.23            1,546 
           PROPEDIA        10.20.195.20                8 
           PROCOMM         10.20.191.76              326 
           PROCOMM         10.20.191.80              367 
           PROCOMM         10.14.105.101           1,595 
           PROSRCH         10.23.35.6                  2    
           PROSRCH         10.20.191.48              236 
           PROSRCH         10.20.191.62               61 
           PROSRCH         10.20.191.63                5 
           PROSRCH         10.20.191.86                9 
           PROSRCH         10.20.191.87                8 
           PROSRCH         10.23.35.169                3 
           PROSRCH         10.23.35.233                6 
           PROSRCH         10.14.104.251              42 
           PROSRCH         10.20.191.125           7,166 
           proprd1         10.20.191.91                1 
           proprd1         10.20.194.57                8 
           PROMEET         10.14.32.67                 3 
           PROMEET         10.14.104.58              116 
           PROMEET         10.20.218.193             424 
           PROMEET         10.20.218.194             433 
           RESPONSE        10.20.191.78               76 
           RESPONSE        10.20.191.82              105 
           response        10.20.191.78              475 
           PROPRD_ADHOC    10.14.105.175               1 
PROPRD                     10.14.105.105               1 
PROPRD1                    10.20.191.77              150 
PROPRD1                    10.20.199.60                1 
PROPRD1                    10.20.199.67                6 
PROPRD1                    10.14.104.105               6 
PROPRD1                    10.20.214.170          15,869 
PROSRCH                    10.14.105.105               1 
proprd1                    10.14.105.19               80 
proprd1                    10.20.191.76              798 
proprd1                    10.20.191.78              160 
proprd1                    10.20.191.80              396 
proprd1                    10.20.191.82               99 
proprd1                    10.20.191.91              274 
proprd1                    10.20.191.93           43,839 
proprd1                    10.20.194.57               96 
proprd1                    10.14.104.122               8 
proprd1                    10.14.104.203               9 

If the SID column is NULL, then the client has used the Service Name, which is displayed in the next column.
This output shows relatively good news. Most of the clients are using Service Name instead of SIDs. This 
output serves two purposes — (1) you can target the IP addresses shown in the lower portion of the output to 
change them to service names whenever possible, and (2) you can check the Service Names used by the IP 
addresses in the upper half if they are accurate.

Mining for Security

So far, we have collected information on the database connections that are legitimate. Listener logs also 
contain information on unsuccessful attempts for connection. Even though not all unsuccessful attempts are 
attacks, a pattern might emerge from the attempt to show a potential attack. Using the listener mining tool, w
can reveal a lot of those issues.

Listener Password

When you set a password for the listener, the user must supply the correct password before issuing some 
damaging commands such as stopping the listener. Note: this behavior is different across Oracle versions. In

Page 4 of 11DBAzine.com:Mining Information from the Listener Log - Part 3

9/16/2008http://www.dbazine.com/oracle/or-articles/nanda16/



TNS-01190: The user is not authorized to execute the requested listener command 

06-NOV-2005 13:45:06 * (CONNECT_DATA=(CID=(PROGRAM=)(HOST=prolin01)(USER=ananda 
))(COMMAND=stop)(ARGUMENTS=64)(SERVICE=LISTENER_PROLIN01)(VERSION=168821760)) * 
 stop * 1190 
TNS-01190: The user is not authorized to execute the requested listener command 

col l_user format a10 
col service format a20 
col logdate format a20 
col host format a10 
col RC format a5 
select to_char(log_date,'mm/dd/yy hh24:mi:ss') logdate, 
parse_listener_log_line(connect_string,'HOST') host, 
       parse_listener_log_line(connect_string,'USER') l_user, 
       parse_listener_log_line(connect_string,'SERVICE') service, 
       action RC 
from listener_log 
where parse_listener_log_line(connect_string, 'COMMAND') = 'stop'; 

LOGDATE              HOST       L_USER     SERVICE              RC 
-------------------- ---------- ---------- -------------------- ----- 
10/16/05 05:35:41    prolin01   oraprol    LISTENER_PROLIN01    0 
10/27/05 21:04:50    prolin01   oraprol    LISTENER_PROLIN01    0 
11/06/05 13:45:06    prolin01   ananda     LISTENER_PROLIN01    1190 
11/06/05 13:46:00    prolin01   ananda     LISTENER_PROLIN01    0 

LOGDATE              HOST       L_USER     SERVICE              RC 

Oracle 9i and earlier, a password, if set, applies to any user trying to manipulate the listener. In Oracle 10g an
later, the Oracle software owner without a password can manipulate the listener. So, if a user other than the 
software owner tries to manipulate the listener, he has to supply the correct password, else he gets the 
following error:

And this message also finds its way to the listener log file such as the following line:

We can mine this information from the listener log using our tool. Note an important difference, however. Th
line has just four fields, not the usual six. Therefore, the field ACTION will show the last field on this line — th
return code, i.e., 1190.

The output is:

Read the lines of the previous example carefully. On one occasion, on 11/06/05 13:45:06, the user “ananda” 
issued the stop command to the listener LISTENER_PROLIN01, without supplying the right password. Does
this indicate an attack? The answer lies in the next line. About a minute later, at 13:46, the user probably 
realized the mistake in the password and supplied the right one and started the listener properly, as shown by
the Return Code of “0.” However, if we had seen a number of lines with Return Code 1190, then we would hav
suspected a possible attack. In addition, we would also have verified that the UNIX user “ananda” is actually a
DBA, mapped to a physical person, and upon questioning, we’d have found out that the user was indeed tryin
to stop the listener, but it failed due to a bad password first time. It all fits together.

Here is another example:

Page 5 of 11DBAzine.com:Mining Information from the Listener Log - Part 3

9/16/2008http://www.dbazine.com/oracle/or-articles/nanda16/



-------------------- ---------- ---------- -------------------- ----- 
10/16/05 05:35:41    prolin01   oraprol    LISTENER_PROLIN01    0 
10/27/05 21:04:50    prolin01   oraprol    LISTENER_PROLIN01    0 
11/06/05 13:45:06    prolin01   ananda     LISTENER_PROLIN01    1190 
11/06/05 13:45:37    prolin01   ananda     LISTENER_PROLIN01    1190 
11/06/05 13:46:01    prolin01   ananda     LISTENER_PROLIN01    1190 
11/06/05 13:46:41    prolin01   ananda     LISTENER_PROLIN01    1190 
11/06/05 13:47:05    prolin01   ananda     LISTENER_PROLIN01    1190 

06-NOV-2005 13:52:33 * 
(CONNECT_DATA=(CID=(PROGRAM=)(HOST=prolin02)(USER=ananda))(COMMAND=log_file)(AR 
GUMENTS=4)(SERVICE=LISTENER_PROLIN01)(VERSION=168821760)(VALUE=/tmp/a)) *  
log_file * 1190 
06-NOV-2005 14:01:45 *  
(CONNECT_DATA=(CID=(PROGRAM=)(HOST=prolin02)(USER=ananda))(COMMAND=log_director 
y)(ARGUMENTS=4)(SERVICE=LISTENER_PROLIN01)(VERSION=168821760)(VALUE=/tmp)) *  
log_directory * 1190 

This time, we see that the user “ananda” made several attempts to supply the correct password, each within 
seconds of the other. This could indicate an explainable and benign situation — the user forgot the password 
and was trying to enter all possible commands. It also indicates a potentially malignant situation, which the 
user “ananda” was actually trying to break the password and stop the listener illegally. This should warrant 
attention and further investigation.

Log File Redirection

One of the breaches comes from the exploit available in the listener code, in which case a hacker might change
the log directory to something other than the default, and then use that to gain valuable information about the
listener, the services, the database, and so on. In a more serious exploit, the hacker might direct certain 
commands to be placed in the trace files that creates a user and grants it a DBA role. These commands are 
then placed in the glogin.sql file, which is executed automatically every time someone on the server connects 
to the database using SQL*Plus. When the DBA logs in, the code is also executed, which creates this Trojan 
horse user. To prevent such an exploit, you should place a password on the listener. When the user tries to 
modify these values, the correct password must be specified. If the wrong password is supplied, the user gets a
TNS-1190 error, which also goes to the log file. Here are two sample entries in the log file, when an incorrect 
password was issued:

This is also something we can successfully mine from logs using our listener log mining tool. Note that this ha
only four fields, not six, as in case of a regular listener log line. These four map to the first four fields on the 
listener log external table, even though the actual column names may be different. So, the meanings of some o
the external table columns are different now as shown in the following:

Column New Meaning

    LOG_DATE 
Log Date

    CONNECT_STRING 
The Connect string, meaning is same

    PROTOCOL_INFO 
The command given by the user (log_file), not the same meaning as protocol_info

The return code (1190), not the

Page 6 of 11DBAzine.com:Mining Information from the Listener Log - Part 3

9/16/2008http://www.dbazine.com/oracle/or-articles/nanda16/



col l_user format a10 
col service format a20 
col logdate format a20 
col host format a10 
col RC format a5 
select to_char(log_date,'mm/dd/yy hh24:mi:ss') logdate, 
parse_listener_log_line(connect_string,'HOST') host, 
       parse_listener_log_line(connect_string,'USER') l_user, 
       parse_listener_log_line(connect_string,'SERVICE') service, 
       action RC 
from listener_log 
where parse_listener_log_line(connect_string, 'COMMAND') = 'log_file'; 

LOGDATE              HOST       L_USER     SERVICE              RC 
-------------------- ---------- ---------- -------------------- ----- 
11/06/05 13:52:33    prolin01   ananda     LISTENER_PROLIN01    1190 

TNS-12508: TNS:listener could not resolve the COMMAND given 

06-NOV-2005 14:10:20 * trc_level * 12508 
TNS-12508: TNS:listener could not resolve the COMMAND given 

    ACTION 

Using this understanding, we can write the query to find out who issued the “log_file” command and what wa
the result:

This shows the output:

This shows that at the specified time, the user “ananda” tried to change the log file of the listener without 
supplying the correct password. He must have received the TNS-1190 error, which is what we see in the 
listener log. This could be an honest mistake, but is definitely worth an investigation.

Admin Restrictions

As I explained previously, one of the most common attacks against the database come through the listener by
changing the log file to the glogin.sql in the directory $ORACLE_HOME/sqlplus/admin and placing some 
commands there. However, what if you could restrict the ability to issue the command from the LSNRCTL 
prompt? You can do so by placing the RESTRICT_ADMIN option in the listener.ora file and restarting the 
listener. Once this is place, the only way to change the log_file, log_directory, trc_level, and so on, is to chang
them in the listener.ora file, then reload the listener. If you want to change them online, you will get this error

The following line will appear in the listener log file:

If you search for this error, you can determine whether anyone has attempted to change them online. Note th
this has only three fields, not six, as in case of a regular listener log line. These three map to the first three 
fields on the listener log external table, even though the actual columns names are different. So, meanings of 
the external table columns may differ as shown:

Page 7 of 11DBAzine.com:Mining Information from the Listener Log - Part 3

9/16/2008http://www.dbazine.com/oracle/or-articles/nanda16/



Col command format a20 
Col return_code format a15 
Set pages 3400 
select  
       log_date, 
       connect_string       command, 
       protocol_info        return_code 
from listener_log 
where connect_string in 
( 
        'password', 
        'rawmode', 
        'displaymode', 
        'trc_file', 
        'trc_directory', 
        'trc_level', 
        'log_file', 
        'log_directory', 
        'log_status', 
        'current_listener', 
        'inbound_connect_timeout', 
        'startup_waittime', 
        'save_config_on_stop', 
        'start', 
        'stop', 
        'status', 
        'services', 
        'version', 
        'reload', 
        'save_config', 
        'trace', 
        'spawn', 
        'change_password', 
        'quit', 
        'exit' 
) 
/ 

LOG_DATE  COMMAND              RETURN_CODE 
--------- -------------------- --------------- 
06-NOV-05 change_password      0 
06-NOV-05 save_config          0 
06-NOV-05 log_file             0 
06-NOV-05 trc_level            12508 
06-NOV-05 save_config_on_stop  12508 
06-NOV-05 log_directory        12508 
06-NOV-05 log_directory        12508 
06-NOV-05 stop                 1169 
06-NOV-05 stop                 1169 

Column New Meaning

    LOG_DATE 
Log Date

    CONNECT_STRING 
The command given by the user (trc_level)

   PROTOCOL_INFO 
The return code (12508)

We can then write the query to extract the correct information:

This returns the following:

Page 8 of 11DBAzine.com:Mining Information from the Listener Log - Part 3

9/16/2008http://www.dbazine.com/oracle/or-articles/nanda16/



06-NOV-05 services             1169 
06-NOV-05 status               1169 
06-NOV-05 reload               1169 
06-NOV-05 status               1169 
06-NOV-05 stop                 1169 
06-NOV-05 status               1169 
06-NOV-05 stop                 1169 

select log_date, 
        parse_listener_log_line(connect_string,'USER') l_user, 
        protocol_info command, 
        action return_code 
from listener_log 
where 
        parse_listener_log_line(connect_string,'COMMAND') 
        in 
        ( 
                'start', 
                'stop', 
                'status', 
                'services', 
                'version', 
                'reload', 
                'save_config', 
                'trace','spawn', 
                'change_password', 
                'quit', 
                'exit' 
        ) 
and action != '0' 
/ 

LOG_DATE  L_USER          COMMAND         RETURN_CODE 
--------- --------------- --------------- --------------- 
06-NOV-05 ananda          stop            1190 
... 
... 

TNS-01190: The user is not authorized to execute the requested listener command 

The results are interesting. On several occasions, we see that someone has issued the commands without 
restarting the listener. Some of them may be really benign — they may have been entered by mistake. But 
that’s something you can easily verify.

To verify further, you will need to find out all other details about these commands — the OS userid, the extat 
time, and so on. You can create a generic query as the following:

The partial output is:

It appears that the user “ananda” issued a stop command, and received an error 1190, as shown in 
RETURN_CODE. The full error message the user must have got is:

Again, this could have been an honest mistake; but it warrants an investigation, nonetheless. If you see a 
pattern, this may lead to a possible attack.

Combining with Auditing

Page 9 of 11DBAzine.com:Mining Information from the Listener Log - Part 3

9/16/2008http://www.dbazine.com/oracle/or-articles/nanda16/



AUDIT CREATE SESSION; 

select username, ses_actions, logoff_time, comment_text, sql_text 
from dba_audit_trail a, listener_log l 
where parse_listener_log_line(connect_string,'SERVICE_NAME') = 'DBA' 
and   parse_listener_log_line(connect_string,'HOST') = 'STSCOTIGERAT42' 
and l.log_date between a.timestamp - (2/24/60/60) and a.timestamp 
and a.terminal = 'STSCOTIGERAT42' 
/ 

USERNAME                       SES_ACTIONS         LOGOFF_TI 
------------------------------ ------------------- --------- 
COMMENT_TEXT 
------------------------------------------------------------------------------- 
- 
SQL_TEXT 
------------------------------------------------------------------------------- 
- 
SCOTIGERA                                          02-NOV-05 
Authenticated by: DATABASE; Client address: 
(ADDRESS=(PROTOCOL=tcp)(HOST=10.14.1 
04.72)(PORT=1365)) 

c:\Work\Orascripts>nslookup 10.20.214.170 
Name:    stcdelpas01.starwoodhotels.com 

So far, we have seen how to mine these valuable pieces of information from the listener log alone. There is 
another source of vital connection information — the database audit trail. This is not turned on by default; yo
must explicitly enable it by setting the initialization parameter audit_trail to DB_EXTENDED or DB and then
restarting the database. When the database is up, issue the following statement:

This will enable the auditing of all logons and logoffs, but not of any specific statements. After the database ha
been running for a while, you can see the audit trails in the view DBA_AUDIT_TRAIL. The audit trails are 
recorded with the timestamp as well; however, the timestamps are made when the database connections are 
made, and the listener log timestamp is made when the listener gets the request. There is a difference between
the two — usually one or two seconds, which we will have to accommodate in the query.

You can perform the following query to combine the audit trails and listener log entries:

The output is as follows:

This shows that the user connected as the Oracle userid SCOTIGERA, even though she used the service_nam
as DBA, so we can rest easy.

Now it is time to connect the JDBC connections with service names and userids. The audit trails contain the 
username, but not the service name, while listener logs have service names, but not usernames. So, we need t
combine them to get the complete picture. Remember, from the discussion on tracking client machines, that 
the host with IP address 10.20.214.170 had the maximum number of connections using thin JDBC drivers? 
Let’s find out how many service names are used from that client.

First, we need to find out the hostname of the server with that IP Address. We can try to get it by nslookup, 
provided it’s in the DNS:

Page 10 of 11DBAzine.com:Mining Information from the Listener Log - Part 3

9/16/2008http://www.dbazine.com/oracle/or-articles/nanda16/



  

Address:  10.20.214.170 

select 
   parse_listener_log_line(connect_string,'SERVICE_NAME') SN, 
   a.username, 
   count(1) cnt 
from  
   listener_log l, 
   dba_audit_trail a 
where 
   parse_listener_log_line(connect_string,'HOST') = '__jdbc__' 
and 
   parse_listener_log_line(protocol_info,'HOST') = '10.20.214.170' 
and  
   l.log_date between a.timestamp - (2/24/60/60) and a.timestamp 
and  
   a.userhost = 'stcdelpas01' 
group by 
   parse_listener_log_line(connect_string,'SERVICE_NAME'), 
   a.username 
/ 

The name of the client is “stcdelpas01,” which is what appears in the Audit Trails. So, we can combine the 
Listener Log records with the Audit Trail ones to track the service names used by this client.

From the output, we can ascertain how the usernames and service names are connected from the hostname. 
This is just an example of how you can combine audit logs and listener logs.

Conclusion

As you can see in the previous sections, the listener log contains several valuable pieces of information that ca
offer insights into the way users connect to the database and how to diagnose common existing, and potential
issues, allowing you to be proactive or at least to gain in-depth knowledge about the database usage.

These articles are an introduction to the concept of building this tool, they do not show the full capabilities of 
this tool or the concept. From this foundation, you can build your own enhancements, with all the 
sophistication you want. For instance, you can build a scheduler job that polls this table and intelligently send
a server alert if a certain condition is satisfied (e.g., if someone tried to stop the listener several times with a 
wrong password or to change the log_file, even though the listener is under ADMIN RESTRICT condition, 
indicating some potential security breach). You can build forms in HTMLDB to present these in some user-
friendly format, or even persuade some friendly developer to develop a Web page that shows the data in a nice
formatted manner for all to examine. The possibilities are endless, and I hope I have tickled your imagination

Good luck mining and enhancing this tool. If you do add enhancements to this tool, I would highly appreciate
it if you could drop me a line or post a comment to this article. After all, knowledge grows by sharing.

--

Arup Nanda has been an Oracle DBA for more than 11 years with a career path spanning all aspects Oracle 
database design and development – modeling, performance tuning, security, disaster recovery, real 
application clusters and much more. He speaks frequently at many events such as Oracle World, IOUG Live 
and writes regularly for publications like Oracle Magazine, DBAzine.com, and Select Journal (the IOUG 
publication). Recognizing his accomplishments and contributions to the user community, Oracle honored him
with the DBA of the Year award in 2003.

Page 11 of 11DBAzine.com:Mining Information from the Listener Log - Part 3

9/16/2008http://www.dbazine.com/oracle/or-articles/nanda16/


